5 research outputs found

    Melatonin and ethanol intake exert opposite effects on circulating estradiol and progesterone and differentially regulate sex steroid receptors in the ovaries, oviducts, and uteri of adult rats

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Chronic ethanol intake is associated with sex hormone disturbances, and it is well known that melatonin plays a key role in regulating several reproductive processes. We report the effects of ethanol intake and melatonin treatment (at doses of 100 mu g/100g BW/day) on sex hormones and steroid receptors in the ovaries, oviducts and uteri of ethanol-preferring rats. After 150 days of treatment, animals were euthanized, and tissue samples were harvested to evaluate androgen, estrogen, progesterone and melatonin receptor subunits (AR, ER-alpha and ER-beta, PRA, PRB and MT1R, respectively). Melatonin decreased estradiol (E2) and increased progesterone (P4) and 6-sulfatoxymelatonin (6-STM), while an ethanol-melatonin combination reduced both P4 and E2. Ovarian AR was not influenced by either treatment, and oviduct AR was reduced after ethanol-melatonin combination: Oviduct ER-alpha, ER-beta and uterine ER-beta were downregulated by either ethanol or melatonin. Conversely, ovarian PRA and PRB were positively regulated by ethanol and ethanol-melatonin combination, whereas PRA was down-regulated in the uterus and oviduct after ethanol consumption. MT1R was increased in ovaries and uteri of melatonin-treated rats. Ethanol and melatonin exert opposite effects on E2 and P4, and they differentially regulate the expression of sex steroid receptors in female reproductive tissues. (C) 2013 Elsevier Inc. All rights reserved.394049Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP [Proc. 2007/59967-7

    Long-Term Exogenous Melatonin Treatment Modulates Overall Feed Efficiency and Protects Ovarian Tissue Against Injuries Caused by Ethanol-Induced Oxidative Stress in Adult UChB Rats

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Background: Chronic ethanol intake leads to reproductive damage including reactive oxygen species formation, which accelerates the oxidative process. Melatonin is known to regulate the reproductive cycle, food/liquid intake, and it may also act as a potent antioxidant indoleamine. The aim of this study was to verify the effects of alcoholism and melatonin treatment on overall feed efficiency and to analyze its protective role against the oxidative stress in the ovarian tissue of UChB rats (submitted to 10% [v/v] voluntary ethanol consumption). Methods: Forty adult female rats (n = 10/group) were finally selected for this study: UChB Co: drinking water only; and UChB EtOH: drinking ethanol at 2 to 6 ml/100 g/d + water, both receiving 0.9% NaCl + 95% ethanol 0.04 ml as vehicle. Concomitantly, UChB Co + M and UChB EtOH + M groups were infused with vehicle + melatonin (100 mu g/100 g body weight/d) intraperitoneally over 60 days. All animals were euthanized by decapitation during the morning estrus (4 AM). Results: Body weight gain was reduced with ethanol plus melatonin after 40 days of treatment. In both melatonin-treated groups, it was observed a reduction in food-derived calories and liquid intake toward the end of treatment. The amount of consumed ethanol dropped during the treatment. Estrous cycle was longer in rats that received both ethanol and melatonin, with prolonged diestrus. Following to oxidative status, lipid hydroperoxide levels were higher in the ovaries of ethanol-preferring rats and decreased after melatonin treatment. Additionally, antioxidant activities of superoxide dismutase, glutathione peroxidase activity, and glutathione reductase activity were increased in melatonin-treated groups. Conclusions: We suggest that melatonin is able to affect feed efficiency and, conversely, it protects the ovaries against the oxidative stress arising from ethanol consumption.35814981508Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP [2007/59967-7, 2008/56229-8

    Chronic Ethanol Consumption Alters All-Trans-Retinoic Acid Concentration and Expression of Their Receptors on the Prostate: A Possible Link Between Alcoholism and Prostate Damage

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Background Ethanol (EtOH) alters the all-trans-retinoic acid (ATRA) levels in some tissues. Retinol and ATRA are essential for cell proliferation, differentiation, and maintenance of prostate homeostasis. It has been suggested that disturbances in retinol/ATRA concentration as well as in the expression of retinoic acid receptors (RARs) contribute to benign prostate hyperplasia and prostate cancer. This study aimed to evaluate whether EtOH consumption is able to alter retinol and ATRA levels in the plasma and prostate tissue as well as the expression of RARs, cell proliferation, and apoptosis index. Methods All animals were divided into 4 groups (n = 10/group). UChA: rats fed 10% (v/v) EtOH ad libitum; UChACo: EtOH-naive rats without access to EtOH; UChB: rats fed 10% (v/v) EtOH ad libitum; UChBCo: EtOH-naive rats without access to EtOH. Animals were euthanized by decapitation after 60 days of EtOH consumption for high-performance liquid chromatography and light microscopy analysis. Results EtOH reduced plasma retinol concentration in both UChA and UChB groups, while the retinol concentration was not significantly different in prostate tissue. Conversely, plasma and prostate ATRA levels increased in UChB group compared with controls, beyond the up-regulation of RAR beta and -? in dorsal prostate lobe. Additionally, no alteration was found in cell proliferation and apoptosis index involving dorsal and lateral prostate lobe. Conclusions We conclude that EtOH alters the plasma retinol concentrations proportionally to the amount of EtOH consumed. Moreover, high EtOH consumption increases the concentration of ATRA in plasma/prostate tissue and especially induces the RAR beta and RAR? in the dorsal prostate lobe. EtOH consumption and increased ATRA levels were not associated with cell proliferation and apoptosis in the prostate.3714956Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Mast Cells and Ethanol Consumption: Interactions in the Prostate, Epididymis and Testis of UChB Rats

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Problem Alcoholism has reached alarming proportions while fertility rates slowing in populations. The assessment of inflammatory effects with emphasis on the variation of the mast cells comparing ethanol chronic ingestion on reproductive organs deserves attention. Method of study The mast cells were investigated with light microscopy using toluidine blue to locate and count total mast cells and immunohistochemistry to identify the connective tissue mast cells (CTMC). Results The increase in total mast cells in the prostate, total and degranulated mast cells in epididymis of UChB rats was accompanied by a greater proportion of mucosal mast cells (MMC) in these organs. In addition, a lower incidence of degranulated mast cells was observed in epididymis of control rats. Conclusions Ethanol increases the number of total and degranulated mast cells in the prostate and epididymis, as well as associated with increasing MMC, and therefore, it could be leading to inflammation in these organs.663170178Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [08/52722-1, 08/57222-7
    corecore