38 research outputs found

    The confined hydrogen atom with a moving nucleus

    Full text link
    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first--order perturbation theory and by a more accurate variational approach. We show that it is greater than the one for the case in which the nucleus is clamped at the center of the box. Present approach resembles the well-known treatment of the helium atom with clamped nucleus

    Further analysis of the connected moments expansion

    Full text link
    We apply the connected moments expansion to simple quantum--mechanical examples and show that under some conditions the main equations of the approach are no longer valid. In particular we consider two--level systems, the harmonic oscillator and the pure quartic oscillator.Comment: 19 pages; 2 tables; 4 figure

    Inversion of perturbation series

    Full text link
    We investigate the inversion of perturbation series and its resummation, and prove that it is related to a recently developed parametric perturbation theory. Results for some illustrative examples show that in some cases series reversion may improve the accuracy of the results

    Two-particle Harmonic Oscillator in a One-dimensional Box

    Get PDF
    We study a harmonic molecule confined to a one-dimensional box with impenetrable walls. We explicitly consider the symmetry of the problem for the cases of different and equal masses. We propose suitable variational functions and compare the approximate energies given by the variation method and perturbation theory with accurate numerical ones for a wide range of values of the box length. We analyze the limits of small and large box size

    Rational Approximation to the Solutions of Two-Point Boundary Value Problems

    Get PDF
    We propose a method for the treatment of two-point boundary value problems given by nonlinear ordinary differential equations. The approach leads to sequences of roots of Hankel determinants that converge rapidly towards the unknown parameter of the problem. We treat several problems of physical interest: the field equation determining the vortex profile in a Ginzburg-Landau effective theory, the fixed-point equation for Wilson’s exact renormalization group, a suitably modified Wegner-Houghton fixed point equation in the local potential approximation, and a Riccati equation. We consider two models where the approach does not apply in order to show the limitations of our Padé-Hankel approach

    Accurate calculation of resonances in multiple-well oscillators

    Full text link
    Quantum--mechanical multiple--well oscillators exhibit curious complex eigenvalues that resemble resonances in models with continuum spectra. We discuss a method for the accurate calculation of their real and imaginary parts

    Variational collocation on finite intervals

    Get PDF
    In this paper we study a new family of sinc--like functions, defined on an interval of finite width. These functions, which we call ``little sinc'', are orthogonal and share many of the properties of the sinc functions. We show that the little sinc functions supplemented with a variational approach enable one to obtain accurate results for a variety of problems. We apply them to the interpolation of functions on finite domain and to the solution of the Schr\"odinger equation, and compare the performance of present approach with others.Comment: 12 pages, 8 figures, 1 tabl

    Variational collocation for systems of coupled anharmonic oscillators

    Full text link
    We have applied a collocation approach to obtain the numerical solution to the stationary Schr\"odinger equation for systems of coupled oscillators. The dependence of the discretized Hamiltonian on scale and angle parameters is exploited to obtain optimal convergence to the exact results. A careful comparison with results taken from the literature is performed, showing the advantages of the present approach.Comment: 14 pages, 10 table

    High order analysis of the limit cycle of the van der Pol oscillator

    Get PDF
    We have applied the Lindstedt-Poincaré method to study the limit cycle of the van der Pol oscillator, obtaining the numerical coefficients of the series for the period and for the amplitude to order 859. Hermite-Padé approximants have been used to extract the location of the branch cut of the series with unprecedented accuracy (100 digits). Both series have then been resummed using an approach based on Padé approximants, where the exact asymptotic behaviors of the period and the amplitude are taken into account. Our results improve drastically all previous results obtained on this subject.Fil: Amore, Paolo. Universidad de Colima; MéxicoFil: Boyd, John P.. University of Michigan; Estados UnidosFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin
    corecore