6 research outputs found

    Biocomposites Based on Thermoplastic Starch Reinforced with Recycled Paper Cellulose Fibers

    Get PDF
    Biocomposites sheets were prepared by compression molding from mixtures of corn starch plasticized by glycerol as matrix and cellulose fibers, extracted from used office paper, as reinforcement filler with contents ranging from 0 to 8% wt/wt of fibers to matrix. Properties of composites were determined by mechanical tensile test, differential scanning calorimetry, thermogravimetric analysis, water absorption measurement, and scanning electron microscopy. The results showed that higher fibers content raised the tensile strength and elastic modulus up to 109% and 112%, respectively, when compared to the non-reinforced thermoplastic starch (TPS). The addition of the fibers improved the thermal resistance and decreased the water absorption up to 63.6%. Scanning electron microscopy illustrated a good adhesion between matrix and fibers

    Adverse effects of cypermethrin on golden apple snails (Pomacea canaliculata) and their eggs, and application of Acetylcholinesterase (AChE) as biomarker

    Get PDF
    This study aimed to evaluate the effects of cypermethrin on hatching rate of golden apple snail eggs, mortality rate of the golden apple snails, and acetylcholinesterase (AChE) expression applied as a bio-indicator. The results showed that cypermethrin concentration did not affect hatching rate or development of the eggs and larvae in comparison with the control. The mortality rate depended on the exposure concentration. Median lethal concentration (LC50) (95% confidence) at 96 h was approximately 8.99 (8.93-9.06). The concentration of cypermethrin had an effect on AChE expression in both the snails and their eggs. The molecular weight of AChE found was 71 kDa, as studied by SDS-PAGE and Western blot techniques. The ELISA technique revealed that AChE contents in both the snails and their eggs were significantly different from the control (p <0.05). Based on our results, AChE could be applied to assess cypermethrin exposure in the snails and their eggs, in order to plan contamination management of such pesticides in the snails and reduce the risks to consumers

    Sustainable green composites of thermoplastic starch and cellulose fibers

    No full text
    Green composites have gained renewed interest as environmental friendly materials and as biodegradable renewable resources for a sustainable development. This review provides an overview of recent advances in green composites based on thermoplastic starch (TPS) and cellulose fibers. It includes information about compositions, preparations, and properties of starch, cellulose fibers, TPS, and green composites based on TPS and cellulose fibers. Introduction and production of these recyclable composites into the material market would be important for environmental sustainability as their use can decrease the volume of petroleum derived plastic waste dumps. Green composites are comparable cheap and abundant, but further research and development is needed for a broader utilization

    Seasonal Changes in Upper Thermal Tolerances of Freshwater Thai Fishes

    No full text
    Seasonal change inferred to climate change inevitably influences Critical thermal maximum (CTmax) of riverine fishes. In this study, we investigated CTmax as thermal tolerance for four common riverine fishes, i.e., Danio regina, Channa gachua, Rasbora caudimaculata and Mystacoleucus chilopterus, in the Kwae Noi river system in western Thailand. The acute thermal tolerance was lower in the wet season (mean river temperature ∼25 °C) and higher in the dry season (mean river temperature ∼23 °C) with medians of wet season-CTmax for those four fishes of 35.3 ± 0.4, 36.2 ± 0.5, 37.3 ± 0.5 and 37.5 ± 0.6 °C, respectively, and high values of dry season-CTmax of 37.4 ± 0.5, 38.3 ± 0.5, 38.7 ± 0.7 and 39.1 ± 0.5 °C, respectively. The variations of CTmax for all of the four species in this study, throughout the wet and dry seasons, attribute to their seasonal plasticity in response to the dynamics of thermal stress. Under climate variability and climate change with increasing the higher temperatures of air and river, and altering the habitat, R. caudimaculata and M. chilopterus had higher capacities to tolerate the acute heat stress across wet and dry seasons

    A Comprehensive Evaluation of Mechanical, Thermal, and Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 3D Printing Application

    No full text
    Functionalities of 3D printing filaments have gained much attention owing to their properties for various applications in the last few years. Innovative biocomposite 3D printing filaments based on polylactic acid (PLA) composited with ZnO nanoflowers at varying contents were successfully fabricated via a single-screw extrusion technique. The effects of the varying ZnO nanoflower contents on their chemical, thermal, mechanical, and antibacterial properties were investigated using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and tensile testing, as well as qualitative and quantitative antibacterial tests, respectively. It was found that the ZnO nanoflowers did not express any chemical reactions with the PLA chains. The degrees of the crystallinity of the PLA/ZnO biocomposite filaments increased when compared with those of the neat PLA, and their properties slightly decreased when increasing the ZnO nanoflower contents. Additionally, the tensile strength of the PLA/ZnO biocomposite filaments gradually decreased when increasing the ZnO nanoflower contents. The antibacterial activity especially increased when increasing the ZnO nanoflower contents. Additionally, these 3D printing filaments performed better against Gram-positive (S. aureus) than Gram-negative (E. coli). This is probably due to the difference in the cell walls of the bacterial strains. The results indicated that these 3D printing filaments could be utilized for 3D printing and applied to medical fields
    corecore