20 research outputs found

    Microturbopompe avec isolation thermique pour cycle Rankine sur puce

    Get PDF
    Les micromoteurs thermiques (Power-MEMS) pourraient offrir une alternative aux batteries pour répondre aux besoins d’énergie compacte et distribuée pour des applications telles que l'électronique portable, les robots, les drones et les systèmes embarqués, les capteurs et les actionneurs. La microturbine à vapeur de cycle thermodynamique de Rankine fait partie de ce domaine de micromoteurs. Ce dispositif est destiné à la génération d’électricité à petite échelle à partir de la récupération de la chaleur perdue. Dans ce contexte, l’objectif de ce travail est la fabrication et la démonstration expérimentale d’une microturbopompe à haute température pour implémenter le cycle de Rankine. Une configuration originale qui intègre l’isolation thermique est, tout d’abord, proposée. Cette configuration est constituée d’un empilement de cinq tranches (silicium et verre) pour enfermer un rotor hybride (silicium et verre) supporté par des paliers hydrostatiques. Le rotor est un disque de 4 mm de diamètre et de 400 µm d’épaisseur avec des pales de turbine sur le dessus et une pompe visqueuse à rainures en spirale sur le dessous. Une technique de micromoulage de verre a été développée dans ce travail pour intégrer du verre dans le rotor comme un matériau isolant thermiquement. La microturbopompe est fabriquée avec succès en utilisant les méthodes de microfabrication des MEMS. Tout d'abord, les paliers hydrostatiques, la turbine et le fonctionnement de la pompe sont caractérisés, jusqu'à une vitesse de rotation de 100 kRPM. La turbine a fourni 0,16 W de puissance mécanique et le débit de la pompe était supérieur à 2.55 mg/s. Ensuite, la première démonstration d'une turbopompe MEMS fonctionnant à des températures élevées a été réalisée. Une comparaison a été faite avec un rotor non isolé pour prouver l'efficacité des stratégies d'isolation thermique. La turbopompe MEMS isolée a été démontrée à 160°C du côté de la turbine. Par extrapolation, la microturbopompe devrait fonctionner jusqu'à une température de 400°C avant que la température dans la pompe n'atteigne 100°C. Pour la première fois, une microturbopompe pour un fonctionnement à haute température est fabriquée et caractérisée

    Étude et fabrication de micro-débitmètres à pression différentielle de type orifice plat destinés à l'installation d'une micro-turbopompe

    Get PDF
    La croissance du développement des microsystèmes fluidiques de puissance dans la dernière décennie a augmenté considérablement le besoin de développer des instruments de mesure différents des instruments traditionnels. Le but du présent travail est l'étude et la fabrication des micro-débitmètres à pression différentielle. Dans ce cas, le principe de calcul du débit se fait par la mesure de la chute de pression à travers un micro-orifice dans un microcanal à section rectangulaire. Ces micro-débitmètres à micro-organe déprimogène sont destinés pour mesurer le débit dans les microsystèmes fluidiques opérant à gaz tels que les power MEMS. Pour ces derniers, actuellement, il n'existe aucun micro-débitmètre sur le marché adapté pour leurs conditions d'opération. Dans ce mémoire, une série de 16 micro-débitmètres de type orifice plat à section rectangulaire ont été fabriqués et testés expérimentalement. Leur géométrie est caractérisée par deux paramètres : un coefficient de contraction allant de 0,2 à 0,8 et un rapport de forme au niveau de l'orifice allant de 0,21 à 2,45. Le diamètre hydraulique des microcanaux varie entre 220 et 388 [micro]m.La variation de la chute de pression à travers le micro-orifice en fonction du débit a été mesurée pour chaque micro-débitmètre avec une pression d'entrée de 5, 6,5 et 8 bars.La plage de débit étudiée est entre 0,2 et 100 mg/s. Le coefficient de décharge de chaque micro-débitmètre a été déterminé. Par ailleurs, le comportement du coefficient de décharge a été étudié en fonction du nombre de Reynolds allant de 100 à 13000, et en fonction de la perte de pression adimensionnée, [[Delta]P/P[indice inférieur 1]], allant de 0,001 à 0,6. À même dimension géométrique, les résultats expérimentaux ont montré que le coefficient de décharge est fonction du nombre de Reynolds pour une valeur du facteur d'expansion, Y, supérieure à 0,9. Pour des valeurs de Y inférieures à 0.9, le coefficient de décharge est dépendant de [[Delta]P/P[indice inférieur 1]]. Les résultats expérimentaux ont été comparés aux résultats de la simulation numérique. De cette façon, le modèle numérique a été validé. Ce travail a permis de développer des micro-débitmètres capables de mesurer de faibles débits à l'ordre des milligrammes par seconde (mg/s) dans les microsystèmes fluidiques de puissance. Particulièrement, le travail a permis de répondre aux exigences de l'installation d'une micro-turbopompe en termes de mesure du débit de gaz. De plus, l'étude approfondie des micro-débitmètres a permis d'acquérir une connaissance plus élaborée de l'écoulement à travers ce type de restriction dans les microcanaux rectangulaires.La caractérisation expérimentale de ce type de micro-débitmètres a été faite pour la première fois. En effet, cette étude a permis de définir des corrélations empiriques du coefficient de décharge spécifiques à chaque dimension géométrique. Ces corrélations seront un bon outil de design de ce genre de mesure

    Microturbopompe avec isolation thermique pour cycle Rankine sur puce

    No full text
    Les micromoteurs thermiques (Power-MEMS) pourraient offrir une alternative aux batteries pour répondre aux besoins d’énergie compacte et distribuée pour des applications telles que l'électronique portable, les robots, les drones et les systèmes embarqués, les capteurs et les actionneurs. La microturbine à vapeur de cycle thermodynamique de Rankine fait partie de ce domaine de micromoteurs. Ce dispositif est destiné à la génération d’électricité à petite échelle à partir de la récupération de la chaleur perdue. Dans ce contexte, l’objectif de ce travail est la fabrication et la démonstration expérimentale d’une microturbopompe à haute température pour implémenter le cycle de Rankine. Une configuration originale qui intègre l’isolation thermique est, tout d’abord, proposée. Cette configuration est constituée d’un empilement de cinq tranches (silicium et verre) pour enfermer un rotor hybride (silicium et verre) supporté par des paliers hydrostatiques. Le rotor est un disque de 4 mm de diamètre et de 400 µm d’épaisseur avec des pales de turbine sur le dessus et une pompe visqueuse à rainures en spirale sur le dessous. Une technique de micromoulage de verre a été développée dans ce travail pour intégrer du verre dans le rotor comme un matériau isolant thermiquement. La microturbopompe est fabriquée avec succès en utilisant les méthodes de microfabrication des MEMS. Tout d'abord, les paliers hydrostatiques, la turbine et le fonctionnement de la pompe sont caractérisés, jusqu'à une vitesse de rotation de 100 kRPM. La turbine a fourni 0,16 W de puissance mécanique et le débit de la pompe était supérieur à 2.55 mg/s. Ensuite, la première démonstration d'une turbopompe MEMS fonctionnant à des températures élevées a été réalisée. Une comparaison a été faite avec un rotor non isolé pour prouver l'efficacité des stratégies d'isolation thermique. La turbopompe MEMS isolée a été démontrée à 160°C du côté de la turbine. Par extrapolation, la microturbopompe devrait fonctionner jusqu'à une température de 400°C avant que la température dans la pompe n'atteigne 100°C. Pour la première fois, une microturbopompe pour un fonctionnement à haute température est fabriquée et caractérisée.Les micromoteurs thermiques (Power-MEMS) pourraient offrir une alternative aux batteries pour répondre aux besoins d’énergie compacte et distribuée pour des applications telles que l'électronique portable, les robots, les drones et les systèmes embarqués, les capteurs et les actionneurs. La microturbine à vapeur de cycle thermodynamique de Rankine fait partie de ce domaine de micromoteurs. Ce dispositif est destiné à la génération d’électricité à petite échelle à partir de la récupération de la chaleur perdue. Dans ce contexte, l’objectif de ce travail est la fabrication et la démonstration expérimentale d’une microturbopompe à haute température pour implémenter le cycle de Rankine. Une configuration originale qui intègre l’isolation thermique est, tout d’abord, proposée. Cette configuration est constituée d’un empilement de cinq tranches (silicium et verre) pour enfermer un rotor hybride (silicium et verre) supporté par des paliers hydrostatiques. Le rotor est un disque de 4 mm de diamètre et de 400 µm d’épaisseur avec des pales de turbine sur le dessus et une pompe visqueuse à rainures en spirale sur le dessous. Une technique de micromoulage de verre a été développée dans ce travail pour intégrer du verre dans le rotor comme un matériau isolant thermiquement. La microturbopompe est fabriquée avec succès en utilisant les méthodes de microfabrication des MEMS. Tout d'abord, les paliers hydrostatiques, la turbine et le fonctionnement de la pompe sont caractérisés, jusqu'à une vitesse de rotation de 100 kRPM. La turbine a fourni 0,16 W de puissance mécanique et le débit de la pompe était supérieur à 2.55 mg/s. Ensuite, la première démonstration d'une turbopompe MEMS fonctionnant à des températures élevées a été réalisée. Une comparaison a été faite avec un rotor non isolé pour prouver l'efficacité des stratégies d'isolation thermique. La turbopompe MEMS isolée a été démontrée à 160°C du côté de la turbine. Par extrapolation, la microturbopompe devrait fonctionner jusqu'à une température de 400°C avant que la température dans la pompe n'atteigne 100°C. Pour la première fois, une microturbopompe pour un fonctionnement à haute température est fabriquée et caractérisée

    Étude et fabrication de micro-débitmètres à pression différentielle de type orifice plat destinés à l'installation d'une micro-turbopompe

    No full text
    La croissance du développement des microsystèmes fluidiques de puissance dans la dernière décennie a augmenté considérablement le besoin de développer des instruments de mesure différents des instruments traditionnels. Le but du présent travail est l'étude et la fabrication des micro-débitmètres à pression différentielle. Dans ce cas, le principe de calcul du débit se fait par la mesure de la chute de pression à travers un micro-orifice dans un microcanal à section rectangulaire. Ces micro-débitmètres à micro-organe déprimogène sont destinés pour mesurer le débit dans les microsystèmes fluidiques opérant à gaz tels que les power MEMS. Pour ces derniers, actuellement, il n'existe aucun micro-débitmètre sur le marché adapté pour leurs conditions d'opération. Dans ce mémoire, une série de 16 micro-débitmètres de type orifice plat à section rectangulaire ont été fabriqués et testés expérimentalement. Leur géométrie est caractérisée par deux paramètres : un coefficient de contraction allant de 0,2 à 0,8 et un rapport de forme au niveau de l'orifice allant de 0,21 à 2,45. Le diamètre hydraulique des microcanaux varie entre 220 et 388 [micro]m.La variation de la chute de pression à travers le micro-orifice en fonction du débit a été mesurée pour chaque micro-débitmètre avec une pression d'entrée de 5, 6,5 et 8 bars.La plage de débit étudiée est entre 0,2 et 100 mg/s. Le coefficient de décharge de chaque micro-débitmètre a été déterminé. Par ailleurs, le comportement du coefficient de décharge a été étudié en fonction du nombre de Reynolds allant de 100 à 13000, et en fonction de la perte de pression adimensionnée, [[Delta]P/P[indice inférieur 1]], allant de 0,001 à 0,6. À même dimension géométrique, les résultats expérimentaux ont montré que le coefficient de décharge est fonction du nombre de Reynolds pour une valeur du facteur d'expansion, Y, supérieure à 0,9. Pour des valeurs de Y inférieures à 0.9, le coefficient de décharge est dépendant de [[Delta]P/P[indice inférieur 1]]. Les résultats expérimentaux ont été comparés aux résultats de la simulation numérique. De cette façon, le modèle numérique a été validé. Ce travail a permis de développer des micro-débitmètres capables de mesurer de faibles débits à l'ordre des milligrammes par seconde (mg/s) dans les microsystèmes fluidiques de puissance. Particulièrement, le travail a permis de répondre aux exigences de l'installation d'une micro-turbopompe en termes de mesure du débit de gaz. De plus, l'étude approfondie des micro-débitmètres a permis d'acquérir une connaissance plus élaborée de l'écoulement à travers ce type de restriction dans les microcanaux rectangulaires.La caractérisation expérimentale de ce type de micro-débitmètres a été faite pour la première fois. En effet, cette étude a permis de définir des corrélations empiriques du coefficient de décharge spécifiques à chaque dimension géométrique. Ces corrélations seront un bon outil de design de ce genre de mesure

    Microturbopompe avec isolation thermique pour cycle Rankine sur puce

    No full text
    Les micromoteurs thermiques (Power-MEMS) pourraient offrir une alternative aux batteries pour répondre aux besoins d’énergie compacte et distribuée pour des applications telles que l'électronique portable, les robots, les drones et les systèmes embarqués, les capteurs et les actionneurs. La microturbine à vapeur de cycle thermodynamique de Rankine fait partie de ce domaine de micromoteurs. Ce dispositif est destiné à la génération d’électricité à petite échelle à partir de la récupération de la chaleur perdue. Dans ce contexte, l’objectif de ce travail est la fabrication et la démonstration expérimentale d’une microturbopompe à haute température pour implémenter le cycle de Rankine. Une configuration originale qui intègre l’isolation thermique est, tout d’abord, proposée. Cette configuration est constituée d’un empilement de cinq tranches (silicium et verre) pour enfermer un rotor hybride (silicium et verre) supporté par des paliers hydrostatiques. Le rotor est un disque de 4 mm de diamètre et de 400 µm d’épaisseur avec des pales de turbine sur le dessus et une pompe visqueuse à rainures en spirale sur le dessous. Une technique de micromoulage de verre a été développée dans ce travail pour intégrer du verre dans le rotor comme un matériau isolant thermiquement. La microturbopompe est fabriquée avec succès en utilisant les méthodes de microfabrication des MEMS. Tout d'abord, les paliers hydrostatiques, la turbine et le fonctionnement de la pompe sont caractérisés, jusqu'à une vitesse de rotation de 100 kRPM. La turbine a fourni 0,16 W de puissance mécanique et le débit de la pompe était supérieur à 2.55 mg/s. Ensuite, la première démonstration d'une turbopompe MEMS fonctionnant à des températures élevées a été réalisée. Une comparaison a été faite avec un rotor non isolé pour prouver l'efficacité des stratégies d'isolation thermique. La turbopompe MEMS isolée a été démontrée à 160°C du côté de la turbine. Par extrapolation, la microturbopompe devrait fonctionner jusqu'à une température de 400°C avant que la température dans la pompe n'atteigne 100°C. Pour la première fois, une microturbopompe pour un fonctionnement à haute température est fabriquée et caractérisée

    Capabilities and Limits to Form High Aspect-Ratio Microstructures by Molding of Borosilicate Glass

    No full text

    Analysis of Flow Structure in Microturbine Operating at Low Reynolds Number

    No full text
    International audienc

    A MEMS Turbopump for High Temperature Rankine Micro Heat Engines—Part I: Design and Fabrication

    No full text
    International audienceWe report the design and microfabrication of a MEMS turbopump with thermal insulation, as the core component of a steam power plant-on-a-chip for waste heat recovery based on the Rankine thermodynamic cycle. Based on a first-generation microturbopump for ambient temperature operation, this second-generation device introduces materials for thermal insulation and design improvements to the rotordynamic components for operation at high temperatures. Thermal management is required to prevent water boiling in the pump and vapor from condensing in the turbine, bearings and seals. The device is a five-wafer stack that encloses a 4-mm diameter rotor disk with microturbine blades on one side and a viscous micropump on the other. This second-generation microturbopump implements unique thermal insulation strategies to isolate the pump from the surrounding hot flows. An out-off-plane thick molded glass embedded into the rotor prevents heat conduction from the turbine to the pump. In addition, an in-plane thick array of oxidized trenches prevents heat conduction from the thrust bearing region to the pump. The assembled microturbopump is fabricated and tested, resulting in the first MEMS turbopump demonstrated at high temperature. Design and fabrication are covered herein, whereas experimental demonstration and characterization are presented in Part II of this two-part paper

    A MEMS Turbopump for High-Temperature Rankine Micro Heat Engines—Part II: Experimental Demonstration

    No full text
    International audienceThis paper presents the experimental demonstration and characterization of a MEMS turbopump with thermal insulation for high temperature operation. The fabrication and design were presented in the first part of this two-part paper. The device consists of a five-wafer stack enclosing a hybrid silicon-glass rotor supported by fluid film bearings, manufactured using MEMS fabrication methods. The rotor consists of a 4-mm diameter disk with microturbine blades on one side and a spiral groove viscous pump on the other side. First, the bearings, turbine and pump operation are characterised, up to a rotational speed of 100 kRPM. The turbine provided 0.16 W of mechanical power and the pump flow rate was above 2.55 mg/s. Then, the first demonstration of a MEMS turbopump operating at elevated temperatures was accomplished. Comparison was made with a non-insulated rotor to prove the effectiveness of the thermal insulation strategies. The insulated MEMS turbopump was demonstrated at 160°C on the turbine side without boiling water on the pump side. This work therefore enables the implementation of efficient and high-power density power plants-on-a-chip for a wide range of waste heat recovery applications. [2020-0051]
    corecore