5 research outputs found

    Susceptibility Assessment of Methicillin-Resistant Strains to Extract

    No full text
    Many plant-derived compounds have been used to treat microbial infections. Staphylococcus aureus a common cause of many organ infections, has generated increasing concern due to its resistance to antibacterial drugs. This work was carried out to explore the susceptibility of 6 strains (LN872136, LN872137, LN871238, LN871239, LN872140, and LN871241) of methicillin-resistant Staphylococcus aureus to aqueous extract of Lepidium sativum seeds in vitro. Various concentrations (5-20 mg/mL) were used to evaluate the effect of the extract on bacteria growth via the assessment of the microbial biomass and the inhibition zone (IZ). The results showed that the plant extract at 15 or 20 mg/mL, significantly decreased the the biomass of S aureus strains after 24 or 48 hours exposure period. Staphylococcus aureus (LN871241) showed the largest IZ at 20 mg/mL and documented by scanning electron microscope. The current work may suggest that L sativum seed extract can be candidate as a promising antimicrobial agent to treat infection with methicillin-resistant S aureus

    Novel 3-(pyrazol-4-yl)-2-(1H-indole-3-carbonyl)acrylonitrile derivatives induce intrinsic and extrinsic apoptotic death mediated P53 in HCT116 colon carcinoma

    No full text
    Abstract A novel series of α-cyano indolylchalcones was prepared, and their chemical structures were confirmed based on the different spectral data. Among them, compound 7f was observed to be the most effective bioactive chalcone with distinguished potency and selectivity against colorectal carcinoma (HCT116) with IC50 value (6.76 µg/mL) relative to the positive control (5 FU) (77.15 µg/mL). In a preliminary action study, the acrylonitrile chalcone 7f was found to enhance apoptotic action via different mechanisms like inhibition of some anti-apoptotic protein expression, regulation of some apoptotic proteins, production of caspases, and cell cycle arrest. All mechanisms suggested that compound 7f could act as a professional chemotherapeutic agent. Also, a molecular docking study was achieved on some selected proteins implicated in cancer (Caspase 9, XIAP, P53 mutant Y220C, and MDM2) which showed variable interactions with compound 7f with good Gibbs free energy scores

    Nanonutraceuticals: Anti-Cancer Activity and Improved Safety of Chemotherapy by Costunolide and Its Nanoformulation against Colon and Breast Cancer

    No full text
    Costunolide (COS) is a sesquiterpene lactone with anticancer properties. The present study investigated the anticancer effects of COS against the human colon (HCT116) and breast (MDA-MB-231-Luc) cancer cell lines. Inhibition of cell lines viability and IC50 of COS were assessed via an MTT assay. Furthermore, the apoptotic rate was detected by assessment of Bcl2-associated X (Bax) and B-cell lymphoma 2 (Bcl2) protein levels by flow cytometry. Xenograft mice model of HCT116 and MDA-MB-231-Luc were carried out to determine the effect of COS and its nanoparticles (COS-NPs). The results demonstrated that COS inhibited the viability of HCT116 and MDA-MB-231-Luc cells, with a half maximal inhibitory concentration value (IC50) of 39.92 µM and 100.57 µM, respectively. COS significantly increased Bax and decreased Bcl2 levels in treated cells. COS and COS-NPs, in combination with doxorubicin (DOX), significantly decreased the tumor growth of HCT116 and MDA-MB-231-Luc implants in mice. Furthermore, oral administration of COS and COS-NPs significantly decreased the viable cells and increased necrotic/apoptotic cells of HCT116 and MDA-MB-231-Luc implants. Interestingly, both COS and COS-NPs protected the cardiac muscles against DOX’s cardiotoxicity. The current results indicated the promising anticancer and cardiac muscles protection of COS and COS-NPs when administered with chemotherapy

    Mapping archaeal diversity in soda lakes by coupling 16S rRNA PCR-DGGE analysis with remote sensing and GIS technology

    Get PDF
    Abstract: The haloarchaeal diversity of four hypersaline alkaline lakes from the Wadi El-Natrun depression (Northern Egypt) was investigated using culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rRNA gene phylotypes, which was combined with remote sensing and geographic information system (GIS) data to highlight the distribution pattern of the microbial diversity in water and sediment samples. The majority of archaeal sequences identified in all four lakes belonged to the phyla Euryarchaeota and Crenarchaeota. Sediment samples from Beida Lake and water samples from El-Hamra Lake showed the highest levels of archaeal diversity. Sequence similarities ≥ 95% were found between six of the acquired clones and uncultured Halorhabdus, Euryarchaeota, and archaeon clones. In addition, two clones shared a high level of sequence similarity (97%) with unclassified archaea, while other nine clones exhibited 96% to 99% sequence similarity with uncultured archaeon clones, and only one clone showed 97% identity with an uncultured Crenarchaeota. Likewise, 7 DGGE bands presented a sequence similarity of 90 to 98% to Halogranum sp., Halalkalicoccus tibetensis, Halalkalicoccus jeotgali, uncultured Halorubrum, Halobacteriaceae sp., or uncultured haloarchaeon. In conclusion, while the variety of alkaliphilic haloarchaea in the examined soda lakes was restricted, the possibility of uncovering novel species for biotechnological applications from these extreme habitats remains promising
    corecore