57 research outputs found

    Density and magnetic intensity dependence of radio pulses induced by energetic air showers

    Full text link
    We have studied the effect of changing the density and magnetic field strength in the coherent pulses that are emitted as energetic showers develop in the atmosphere. For this purpose we have developed an extension of ZHS, a program to calculate coherent radio pulses from electromagnetic showers in homogeneous media, to account for the Lorentz force due to a magnetic field. This makes it possible to perform quite realistic simulations of radio pulses from air showers in a medium similar to the atmosphere but without variations of density with altitude. The effects of independently changing the density, the refractive index and the magnetic field strength are studied in the frequency domain for observers in the Cherenkov direction at far distances from the shower. This approach is particularly enlightening providing an explanation of the spectral behavior of the induced electric field in terms of shower development parameters. More importantly, it clearly displays the complex scaling properties of the pulses as density and magnetic field intensity are varied. The usually assumed linear behavior of electric field amplitude with magnetic field intensity is shown to hold up to a given magnetic field strength at which the extra time delays due to the deflection in the magnetic field break it. Scaling properties of the pulses are obtained as the density of air decreases relative to sea level. A remarkably accurate scaling law is obtained that relates the spectra of pulses obtained when reducing the density and increasing the magnetic field.Comment: 27 pages, 14 figure

    Simulations of radio emission from air showers with CORSIKA 8

    Get PDF

    Parallel processing of radio signals and detector arrays in CORSIKA 8

    Get PDF
    This contribution describes some recent advances in the parallelization of the generation and processing of radio signals emitted by particle showers in CORSIKA 8. CORSIKA 8 is a Monte Carlo simulation framework for modeling ultra-high energy particle cascades in astroparticle physics. The aspects associated with the generation and processing of radio signals in antennas arrays are reviewed, focusing on the key design opportunities and constraints for deployment of multiple threads on such calculations. The audience is also introduced to Gyges, a lightweight, header-only and flexible multithread self-adaptive scheduler written compliant with C++17 and C++20, which is used to distribute and manage the worker computer threads during the parallel calculations. Finally, performance and scalability measurements are provided and the integration into CORSIKA 8 is commented

    Hadron cascades in CORSIKA 8

    Get PDF
    We present characteristics of hadronic cascades from interactions of cosmic rays in the atmosphere, simulated by the novel CORSIKA 8 framework. The simulated spectra of secondaries, such as pions, kaons, baryons and muons, are compared with the cascade equations solvers MCEq in air shower mode, and full 3D air shower Monte Carlo simulations using the legacy CORSIKA 7. A novel capability of CORSIKA 8 is the simulation of cascades in media other than air, widening the scope of potential applications. We demonstrate this by simulating cosmic ray showers in the Mars atmosphere, as well as simulating a shower traversing from air into water. The CORSIKA 8 framework demonstrates good accuracy and robustness in comparison with previous results, in particular in those relevant for the production of muons in air showers. Furthermore, the impact of forward ρ0^{0} production on air showers is studied and illustrated

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations
    corecore