6 research outputs found

    Assessment of Heavy Metals Contamination in Groundwater: A Case Study of the South of Setif Area, East Algeria

    Get PDF
    Heavy metals in groundwater were analyzed and their sources and impacts were identified using multivariate statistical tools and risk assessment. Three significant factors were extracted by factor analysis (FA), explaining 75.69% of total variance. These factors were in turn described by the clusters C3, C2 and C1, respectively, resulting from the cluster analysis (CA). Factor analysis and cluster analysis revealed significant anthropogenic contributions and water-rock interaction effects of the metals in groundwater. The mean values of heavy metal evaluation index (HEI) and degree of contamination (Cdeg) indices indicated that the groundwater samples were contaminated with high degree of pollution by cadmium (Cd) and lead (Pb). The hazard quotients (via ingestion) of Cd and Pb were found to be higher than the safe limits, posing threat to the consumers. However, no risk related to the dermal contact was associated with the measured metal levels

    Suitability and Assessment of Surface Water for Irrigation Purpose

    Get PDF
    Surface water is an important resource that can create tensions between different countries sharing the same water sources to know that the agriculture is considered as the last sector that exploits less water compared to the industry which uses very large water quantities. The future strategies of agricultural development in the most of these countries depend on the ability to maintain, improve and expand irrigated agriculture. In this light, this chapter is written in the way to show some steps of the evaluation of surface water for irrigation purpose. The results obtained from this research make it possible to evaluate the suitability of surface water for irrigation and to draw useful recommendations for dam managers and farmers

    Assessment of Surface Water Quality Using Water Quality Index and Discriminant Analysis Method

    No full text
    Given the complexity of water quality data sets, water resources pose a significant problem for global public order in terms of water quality protection and management. In this study, surface water quality for drinking and irrigation purposes was evaluated by calculating the Water Quality Index (WQI) and Irrigation Water Quality Index (IWQI) based on nine hydrochemical parameters. The discriminant analysis (DA) method was used to identify the variables that are most responsible for spatial differentiation. The results indicate that the surface water quality for drinking is of poor and very poor quality according to the WQI values, however, the IWQI values indicate that the water is acceptable for irrigation with restrictions for salinity sensitive plants. The discriminate analysis method identified pH, potassium, chloride, sulfate, and bicarbonate as the significant parameters that discriminate between the different stations and contribute to spatial variation of the surface water quality. The findings of this study provide valuable information for decision-makers to address the important problem of water quality management and protection

    Assessment of Surface Water Quality Using Water Quality Index and Discriminant Analysis Method

    No full text
    Given the complexity of water quality data sets, water resources pose a significant problem for global public order in terms of water quality protection and management. In this study, surface water quality for drinking and irrigation purposes was evaluated by calculating the Water Quality Index (WQI) and Irrigation Water Quality Index (IWQI) based on nine hydrochemical parameters. The discriminant analysis (DA) method was used to identify the variables that are most responsible for spatial differentiation. The results indicate that the surface water quality for drinking is of poor and very poor quality according to the WQI values, however, the IWQI values indicate that the water is acceptable for irrigation with restrictions for salinity sensitive plants. The discriminate analysis method identified pH, potassium, chloride, sulfate, and bicarbonate as the significant parameters that discriminate between the different stations and contribute to spatial variation of the surface water quality. The findings of this study provide valuable information for decision-makers to address the important problem of water quality management and protection

    Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria

    No full text
    In this study, we analyzed the quality and the potential noncarcinogenic health risk of nitrate in groundwater in the El Milia plain, Kebir Rhumel Basin, Algeria. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. The potential noncarcinogenic health risks associated with nitrate contamination in groundwater for adults and children through the drinking water pathway were assessed using the hazard quotient (HQ). The results revealed that approximately 5.7% of the total groundwater samples exceeded the HQ limit for adults, indicating potential health risks. Moreover, a higher percentage, 14.28%, of the total groundwater samples exceeded the HQ limit for children, highlighting their increased vulnerability to noncarcinogenic health hazards associated with nitrate contamination in the study area. Taking timely action and ensuring strict compliance with regulations in groundwater management are crucial for protecting public health, preserving the environment, addressing water scarcity, and achieving sustainable development goals

    Zeolite Waste Characterization and Use as Low-Cost, Ecofriendly, and Sustainable Material for Malachite Green and Methylene Blue Dyes Removal: Box-Behnken Design, Kinetics, and Thermodynamics

    No full text
    International audienceThis study investigated the potential of 4A zeolite, named4AZW in this work, generated by natural gas dehydration units as solid waste after several treatment cycles, as a low-cost adsorbent to separately remove two cationic dyes, methylene blue (MB) and malachite green (MG), from an aqueous solution within a batch process. The adsorbent material was characterized by N(2)gas adsorption-desorption, X-ray fluorescence spectrometry, X-ray diffraction, FT-IR spectroscopy, and the determination of its cation exchange capacity and point of zero charge. The influence of key operating parameters, such as the pH, adsorbent dosage, ionic strength, contact time, initial dye concentration, and temperature, was investigated. Three independent variables acting on MB adsorption performance were selected from the Box-Behnken design (BBD) and for process modeling and optimization. An analysis of variance (ANOVA), an F-test, and p-values were used to analyze the main and interaction effects. The experimental data were satisfyingly fitted with quadratic regression with adjusted R-2= 0.9961. The pseudo-second-order kinetic model described the adsorption of the dyes on 4AZW. The equilibrium data were well-fitted by the Langmuir model for each adsorption system (MB-4AZW and MG-4AZW) with maximum adsorption capacity (q(max)) values of 9.95 and 45.64 mg/g, respectively, at 25 degrees C. Thermodynamics studies showed that both adsorption systems are spontaneous and endothermic
    corecore