19 research outputs found

    FoxP1 orchestration of ASD-relevant signaling pathways in the striatum

    Get PDF
    Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication

    Perioperative Anesthesia Lean Implementation Is Associated With Increased Operative Efficiency in Posterior Cervical Surgeries at a HighVolume Spine Center.

    No full text
    OBJECTIVE:Lean management strategies aim to increase efficiency by eliminating waste or by improving processes to optimize value. The operating room (OR) is an arena where these strategies can be implemented. We assessed changes in OR efficiency after the application of lean methodology on perioperative anesthesia associated with posterior cervical spine surgeries. METHODS:We utilized pre- and post-lean study design to identify inefficiencies during the perioperative anesthesia process and implemented strategies to improve the process. Patient characteristics were recorded to assess for differences between the 2 groups (group 1, prelean; group 2, post-lean). In the pre-lean period, key steps in the perioperative anesthesia process were identified that were amenable to lean implementation. The time required for each identified key step was recorded by an independent study coordinator. The times for each step were then compared between the groups utilizing univariate analyses. RESULTS:After lean implementation, there was a significant decrease in overall perioperative anesthesia process time (88.4 ± 4.7 minutes vs. 76.2 ± 3.2 minutes, p = 0.04). This was driven by significant decreases in the steps: transport and setup (10.4 ± 0.8 minutes vs. 8.0 ± 0.7 minutes, p = 0.03) and positioning (20.8 ± 2.1 minutes vs. 15.7 ± 1.3 minutes, p = 0.046). Of note, the total time spent in the OR was lower for group 2 (270.1 ± 14.6 minutes vs. 252.8 ± 14.1 minutes) but the result was not statistically significant, even when adjusting for number of operated levels. CONCLUSION:Lean methodology may be successfully applied to posterior cervical spine surgery whereby improvements in the perioperative anesthetic process are associated with significantly increased OR efficiency
    corecore