27 research outputs found

    Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries

    Get PDF
    This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-à-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME) increased by 54.3% (61.5 to 94.9 ×109 kg annually) from the year 1961 to 2010, and the highest annual growth rate (AGR) was noted for goat (2.0%), followed by buffalo (1.57%) and swine (1.53%). Global EME is projected to increase to 120×109 kg by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3%) between the years 1961 to 2010, and AGR was highest for goat (1.91%), followed by buffalo (1.55%), swine (1.28%), sheep (1.25%) and cattle (0.70%). In India, total EME was projected to grow by 18.8×109 kg in 2050. Global methane emission from manure (MEM) increased from 6.81 ×109 kg in 1961 to 11.4×109 kg in 2010 (an increase of 67.6%), and is projected to grow to 15×109 kg by 2050. In India, the annual MEM increased from 0.52×109 kg to 1.1×109 kg (with an AGR of 1.57%) in this period, which could increase to 1.54×109 kg in 2050. Nitrous oxide emission from manure in India could be 21.4×106 kg in 2050 from 15.3×106 kg in 2010. The AGR of global GHG emissions changed a small extent (only 0.11%) from developed countries, but increased drastically (1.23%) for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%), swine (9.57%) and sheep (7.40%), and for developing countries from cattle (68.3%), buffalo (13.7%) and goat (5.4%). The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010) than the developing countries. With this trend, world GHG emissions could reach 3,520×109 kg CO2-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world

    A review

    Get PDF
    Urea in diets of ruminants has been investigated to substitute expensive animal and vegetable protein sources for more than a century, and has been widely incorporated in diets of ruminants for many years. Urea is also recycled to the fermentative parts of the gastrointestinal (GI) tracts through saliva or direct secretory flux from blood depending upon the dietary situations. Within the GI tracts, urea is hydrolyzed to ammonia by urease enzymes produced by GI microorganisms and subsequent ammonia utilization serves the synthesis of microbial protein. In ruminants, excessive urease activity in the rumen may lead to urea/ammonia toxicity when high amounts of urea are fed to animals; and in non-ruminants, ammonia concentrations in the GI content and milieu may cause damage to the GI mucosa, resulting in impaired nutrient absorption, futile energy and protein spillage and decreased growth performance. Relatively little attention has been directed to this area by researchers. Therefore, the present review intends to discuss current knowledge in ureolytic bacterial populations, urease activities and factors affecting them, urea metabolism by microorganisms, and the application of inhibitors of urease activity in livestock animals. The information related to the ureolytic bacteria and urease activity could be useful for improving protein utilization efficiency in ruminants and for the reduction of the ammonia concentration in GI tracts of monogastric animals. Application of recent molecular methods can be expected to provide rationales for improved strategies to modulate urease and urea dynamics in the GI tract. This would lead to improved GI health, production performance and environmental compatibility of livestock production

    Growth Performance, Eating Behavior, Digestibility, Blood Metabolites, and Carcass Traits in Growing-Finishing Fat-Tailed Lambs Fed Different Levels of Dietary Neutral Detergent Fiber with High Rumen Undegradable Protein

    Get PDF
    This study was conducted to investigate the effect of decreasing concentrations of dietary neutral detergent fiber (NDF) at high rumen undegradable protein (RUP) on performance, digestibility, chewing activity, blood attributes, and carcass characteristics in 32 weaned male Afshari lambs (90 days of age; 26 kg initial body weight; BW). Dietary metabolic energy (ME) was increased from 10.6–11.5 and 11.8 MJ/kg dry matter (DM) by replacing alfalfa hay with grain to achieve NDF concentrations of 270, 245, and 220 g/kg DM, respectively, at 66.6 g/kg DM of RUP. The control (CON) diet contained 10.9 MJ/kg ME, 270 g/kg NDF and 59.6 g/kg RUP on DM basis. Rations containedsimilar concentrations of crude protein (CP, 160 g/kg DM). Lambs were slaughtered after a 56-d feeding period. The increase in dietary RUP had no effect on BW and average daily gain (ADG) but tended to decrease apparent digestibility of CP and DM, significantlydecreasedplasma urea concentration, and increased carcass CP content. Other body or carcass characteristics were unchanged. Decreasing dietary fiber at high RUP did not result in adverse effects on BW, ADG, body length, withers height, apparent digestibility of DM and CP, and BFT, but decreased DM intake (1539 vs. 1706 g/d) and feed conversion ratio (FCR; 4.33 vs. 5.39) compared with CON. Gradual reduction in NDF and physically effective NDF did not affecteating, ruminating or chewing times. Plasma glucose concentration was greater for NDF220 than for the three other treatments (p = 0.015).Slaughtering traits were not affected by dietary treatment except for hot carcass weight, which increased in NDF220 and NDF245 compared with NDF270 (p = 0.021). The concentration of meat CP increased in NDF270 versus CON (167 vs. 152 g/kg). Quadratic effects occurred for meat ether extract concentration (highest in NDF220) and fat-tail weight (highest in NDF245). In conclusion, the results showed that increasing the proportion of RUP within dietary CP improves carcass protein accretion. Decreasing dietary NDF to 220 g/kg DM at high RUP does not impair eating behavior and improves FCR in 3-month-old fat-tailed lambs

    Essential Nanominerals and Other Nanomaterials in Poultry Nutrition and Production

    Get PDF
    Poultry production, health and wellbeing are highly dependent upon formulation of balanced rations in terms of energy, protein, and micronutrients (vitamins and minerals). Among all, minerals are required in fewer quantities, but they are very important to maintain the productivity in poultry. Minerals present in the feeds are less bioavailable and additional supplementation is obligatory to meet the physiological demands of poultry. Conventionally, minerals are supplemented as inorganic salts, which are less absorbed and, thus, a major proportion is excreted to the surroundings creating environment issues. Nano-minerals and organic mineral chelates are other alternative to be used as livestock and poultry feed supplements. Though organic minerals are more bioavailable than inorganic salts, their high cost limits its use. In contrast, nano-minerals are relatively easy to synthesize at a lower cost. Nano-minerals are of the size from 1–100 nm and due to such small size, there is an enormous increase in surface area and thus their biological responses. The biological response studies have signified better retention of nano-minerals as compared to inorganic salts, and consequently leached less to the environment preventing possible pollution. Apart from these, nano-minerals have been shown to enhance growth, egg production and quality, immune-modulation and antioxidant status, and at the same time economize the production by reducing the supplemental dose of minerals and improving the feed conversion ratio. Some nano-minerals and other nanoparticles have strong antimicrobial effects, which have been shown to reduce pathogenic microorganisms in the gut. Nano-minerals seem to be less toxic than conventional mineral sources. Though less, few studies have indicated toxic effects of nano-mineral supplementation at higher dose of application, which should be validated by more programmed studies. Nanotechnology in poultry production system is still in its budding stage and more detailed studies are warranted to validate, establish and search for new effects of nano-minerals as they sometimes produce effects beyond expectation. This review highlights the biological responses of nanominerals on poultry production performance, quality of meat and eggs, tissue retention, immunity, antioxidant activity and antimicrobial actions compared with their conventional mineral sources

    Effects of Oil Supplements on Growth Performance, Eating Behavior, Ruminal Fermentation, and Ruminal Morphology in Lambs during Transition from a Low- to a High-Grain Diet

    Get PDF
    The objectives of this study were to investigate the effect of a maximum recommended oil supplementation on growth performance, eating behavior, ruminal fermentation, and ruminal morphological characteristics in growing lambs during transition from a low- to a high-grain diet. A total of 21 Afshari male lambs with an initial body weight (BW) of 41.4 ± 9.1 kg (mean ± SD) and at 5–6 months of age were randomly assigned to one of three dietary treatments (n = 7 per group), including (1) a grain-based diet with no fat supplement (CON), (2) CON plus 80 g/d of prilled palm oil (PALM), and (3) CON plus 80 g/d soybean oil (SOY); oils were equivalent to 50 g/kg of dry matter based on initial dry matter intake (DMI). All lambs were adapted to the high-grain diet for 21 d. In the adaptation period, lambs were gradually transferred to a dietary forage-to-concentrate ratio of 20:80 by replacing 100 g/kg of the preceding diet every 3 d. Thereafter, lambs were fed experimental diets for another 22 days. Fat-supplemented lambs had greater DMI, body weight (BW), and average daily gain (ADG), with a lower feed to gain ratio (p 0.05). The results from this study suggest that fat supplementation to high-grain diets may improve the development of ruminal epithelia and modify ruminal fermentation via optimized eating behavior or the direct effect of oils on the ruminal environment, resulting in better growth performance in growing lambs

    Effects of adaptation of in vitro rumen culture to garlic oil, nitrate and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations

    No full text
    This study investigated the effects of garlic oil (0.25 g/L), nitrate (5 mM) and quillaja saponin (0.6 g/L), alone and in binary or ternary combinations, on methanogenesis, rumen fermentation, and abundances of select microbial populations using in vitro rumen cultures. Potential adaptation to these compounds was also examined by repeated transfers of the cultures on alternate days until day 18. All treatments except saponin alone significantly decreased methanogenesis. Ternary combinations of garlic oil, nitrate, and saponin additively/synergistically suppressed methane production by 65% at day 2 and by 40% at day 18. Feed digestion was not adversely affected by any of the treatments at day 2, but was decreased by the combinations (binary and ternary) of garlic oil with the other inhibitors at days 10 and 18. Saponin, alone or in combinations, and garlic oil alone lowered ammonia concentration at day 2, while nitrate increased ammonia concentration at days 10 and 18. Total volatile fatty acid concentration was decreased by garlic oil alone or garlic oil-saponin combination. Molar proportions of acetate and propionate were affected to different extents by the different treatments. The abundances of methanogens were similar among treatments at day 2; however, garlic oil and its combination with saponin and/or nitrate at day 10 and all treatments except saponin at day 18 significantly decreased the abundances of methanogens. All the inhibitors, either alone or in combinations, did not adversely affect the abundances of total bacteria or Ruminococcus flavefaciens. However, at day 18 the abundances of Fibrobacter succinogenes and Ruminococcus albus were lowered in the presence of garlic oil and saponin, respectively. The results suggest that garlic oil-nitrate-saponin combination (at the doses used in this study) can effectively decreases methanogenesis in the rumen, but its efficacy may decrease while inhibition to feed digestion can increase over time

    Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants

    No full text
    Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4 producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed towards both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents recent developments and critical analysis on different measurement and dietary mitigation of enteric CH4 emissions technologies

    Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis

    Get PDF
    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs) in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P≤0.05) in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P≤0.05) correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria

    Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants

    No full text
    The rumen is an integrated dynamic microbial ecosystem composed of enormous populations of bacteria, protozoa, fungi, archaea, and bacteriophages. These microbes ferment feed organic matter consumed by ruminants to produce beneficial products such as microbial biomass and short-chain fatty acids, which form the major metabolic fuels for ruminants. The fermentation process also involves inefficient end product formation for both host animals and the environment, such as ammonia, methane, and carbon dioxide production. In typical conditions of ruminal fermentation, microbiota does not produce an optimal mixture of enzymes to maximize plant cell wall degradation or synthesize maximum microbial protein. Well-functioning rumen can be achieved through microbial manipulation by alteration of rumen microbiome composition to enhance specific beneficial fermentation pathways while minimizing or altering inefficient fermentation pathways. Therefore, manipulating ruminal fermentation is useful to improve feed conversion efficiency, animal productivity, and product quality. Understanding rumen microbial diversity and dynamics is crucial to maximize animal production efficiency and mitigate the emission of greenhouse gases from ruminants. This chapter discusses genetic and nongenetic rumen manipulation methods to achieve better rumen microbial fermentation including improvement of fibrolytic activity, inhibition of methanogenesis, prevention of acidosis, and balancing rumen ammonia concentration for optimal microbial protein synthesis
    corecore