3 research outputs found

    Immune thrombocytopenic purpura after influenza vaccine administration; a systematic review and meta-analysis

    No full text
    Abstract Background The American Society of Haematology defines immune thrombocytopenic purpura (ITP) as a common hematologic disorder characterized by a transient or long-term decrease in platelet counts (< 100 × 109/L.), purpura, and haemorrhagic episodes caused by antiplatelet autoantibodies, with the exclusion of other clinical conditions. We aimed to systematically determine the incidence of ITP in adults and children following influenza vaccination, the duration between vaccination and the occurrence of ITP, and to identify predictors of ITP after the vaccine. Methods We searched PubMed, Cochrane Library, Google Scholar, Web of Science, Scopus, and Science Direct. We included primary studies that assessed the occurrence of immune thrombocytopenia in individuals who had received any influenza vaccine (primary or booster dose), regardless of the dosage, preparation, time of administration, or age of the participants. We excluded studies that were (a) Narrative, scoping, and umbrella reviews ;(b) studies with no accessible full text, abstract-only studies, or (c) Overlapping or unreliable data. The risk of bias in the included studies was assessed using the Joanna Briggs Institute (JBI) tool. We categorized studies for qualitative analysis based on study design. Descriptive statistics were used to summarize quantitative data, including the incidence of ITP after influenza vaccination. Results Out of 729 articles retrieved from the database search, we included 24 studies. All patients identified and included in this systematic review presented with immune thrombocytopenia, determined by their platelet count. The period between vaccination and the occurrence of ITP ranged from (2:35 days). The mean duration was 13.5 days. The analysis revealed a statistically significant incidence rate ratio (IRR) = 1.85,95% CI [1.03–3.32] of ITP occurrence after 42 days. Conclusions Influenza-associated ITP is uncommon, self-limiting, non-life-threatening, and curable. None of the patients reported having severe adverse events or death. Further studies are required to confirm the exact incidence of the ITP to better understand the pathophysiology of ITP development post-influenza vaccination

    Preventing the Next Pandemic: Is Live Vaccine Efficacious against Monkeypox, or Is There a Need for Killed Virus and mRNA Vaccines?

    No full text
    (1) Background: The monkeypox virus (MPV) is a double-stranded DNA virus belonging to the Poxviridae family, Chordopoxvirinae subfamily, and Orthopoxvirus genus. It was called monkeypox because it was first discovered in monkeys, in a Danish laboratory, in 1958. However, the actual reservoir for MPV is still unknown. (2) Methods and Results: We have reviewed the existing literature on the options for Monkeypox virus. There are three available vaccines for orthopoxviruses—ACAM2000, JYNNEOS, and LC16—with the first being a replicating vaccine and the latter being non- or minimally replicating. (3) Conclusions: Smallpox vaccinations previously provided coincidental immunity to MPV. ACAM2000 (a live-attenuated replicating vaccine) and JYNNEOS (a live-attenuated, nonreplicating vaccine) are two US FDA-approved vaccines that can prevent monkeypox. However, ACAM2000 may cause serious side effects, including cardiac problems, whereas JYNNEOS is associated with fewer complications. The recent outbreaks across the globe have once again highlighted the need for constant monitoring and the development of novel prophylactic and therapeutic modalities. Based on available data, there is still a need to develop an effective and safe new generation of vaccines specific for monkeypox that are killed or developed into a mRNA vaccine before monkeypox is declared a pandemic
    corecore