497 research outputs found

    Relativistic Images in Randall-Sundrum II Braneworld Lensing

    Get PDF
    In this paper, we explore the properties of gravitational lensing by black holes in the Randall-Sundrum II braneworld. We use numerical techniques to calculate lensing observables using the Tidal Reissner-Nordstrom (TRN) and Garriga-Tanaka metrics to examine supermassive black holes and primordial black holes. We introduce a new way tp parameterize tidal charge in the TRN metric which results in a large increase in image magnifications for braneworld primordial black holes compared to their 4 dimensional analogues. Finally, we offer a mathematical analysis that allows us to analyze the validity of the logarithmic approximation of the bending angle for any static, spherically symmetric metric. We apply this to the TRN metric and show that it is valid for any amount of tidal charge.Comment: 13 pages, 3 figures; Accepted for Publication in Physical Review

    Strong Gravitational Lensing by Sgr A*

    Full text link
    In recent years, there has been increasing recognition of the potential of the galactic center as a probe of general relativity in the strong field. There is almost certainly a black hole at Sgr A* in the galactic center, and this would allow us the opportunity to probe dynamics near the exterior of the black hole. In the last decade, there has been research into extreme gravitational lensing in the galactic center. Unlike in most applications of gravitational lensing, where the bending angle is of the order of several arc seconds, very large bending angles are possible for light that closely approaches a black hole. Photons may even loop multiple times around a black hole before reaching the observer. There have been many proposals to use light's close approach to the black hole as a probe of the black hole metric. Of particular interest is the property of light lensed by the S stars orbiting in the galactic center. This paper will review some of the attempts made to study extreme lensing as well as extend the analysis of lensing by S stars. In particular, we are interested in the effect of a Reissner-Nordstrom like 1/r^2 term in the metric and how this would affect the properties of relativistic images.Comment: 13 pages, 9 figures. Submitted as invited review article for the GR19 issue of CQ

    Barrier-Restoring Therapies in Atopic Dermatitis: Current Approaches and Future Perspectives

    Get PDF
    Atopic dermatitis is a multifactorial, chronic relapsing, inflammatory disease, characterized by xerosis, eczematous lesions, and pruritus. The latter usually leads to an “itch-scratch” cycle that may compromise the epidermal barrier. Skin barrier abnormalities in atopic dermatitis may result from mutations in the gene encoding for filaggrin, which plays an important role in the formation of cornified cytosol. Barrier abnormalities render the skin more permeable to irritants, allergens, and microorganisms. Treatment of atopic dermatitis must be directed to control the itching, suppress the inflammation, and restore the skin barrier. Emollients, both creams and ointments, improve the barrier function of stratum corneum by providing it with water and lipids. Studies on atopic dermatitis and barrier repair treatment show that adequate lipid replacement therapy reduces the inflammation and restores epidermal function. Efforts directed to develop immunomodulators that interfere with cytokine-induced skin barrier dysfunction, provide a promising strategy for treatment of atopic dermatitis. Moreover, an impressive proliferation of more than 80 clinical studies focusing on topical treatments in atopic dermatitis led to growing expectations for better therapies

    Toward a Framework For Systematic Error Modeling Of Spaceborne Precipitation Radar With Noaa/Nssl Ground Radar Based National Mosaic Qpe

    Get PDF
    Characterization of the error associated with satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. The authors focus here on the error structure of NASA\u27s Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a 3-month data sample in the southern part of the United States. The primary contribution of this study is the presentation of the detailed steps required to derive a trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relies on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors are revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall delectability and rainfall-rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall-rate estimates from other sensors on board low-earth-orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission

    Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Get PDF
    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission

    Local dynamics of gap-junction-coupled interneuron networks

    Full text link
    Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85426/1/ph10_1_016015.pd

    Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models

    Full text link
    corecore