5 research outputs found

    INVESTIGATING THE POTENTIAL OF AN ANTIDEPRESSANT INTRANASAL MUCOADHESIVE MICROEMULSION

    Get PDF
    Objective: The main aim of this study was to formulate, develop and optimized a duloxetine hydrochloride (dlx-hcl) loaded mucoadhesive microemulsion intended for intranasal administration.Methods: Established on solubility studies capmul mcm, transcutol-p, labrasol were used as oil, co-surfactant and surfactant respectively. The optimized mucoadhesive microemulsion prepared using water titration method was further characterized for particle size, polydispersity index, zeta potential and conductivity measurements followed by drug content, nasal cilio toxicity and biochemical estimation of the selected formulation.Results: All physicochemical parameters conducted, proved that dlx-hcl microemulsion was appropriate for nasal delivery. Chitosan, used as mucoadhesive polymer demonstrated enhanced retention time of the microemulsion in nasal mucosa with no signs of toxicity and epithelial damage. The particle size and zeta potential were found to be of 200 nm and-15 mV respectively considering the formulation safe for nasal delivery.Conclusion: This formulation strategy can be used as an effective targeting technique for the drugs having low bioavailability and poor brain penetration along with an effective method for the treatment long-term disease like depression

    INVESTIGATING THE POTENTIAL OF AN ANTIDEPRESSANT INTRANASAL MUCOADHESIVE MICROEMULSION

    Get PDF
    Objective: The main aim of this study was to formulate, develop and optimized a duloxetine hydrochloride (dlx-hcl) loaded mucoadhesive microemulsion intended for intranasal administration.Methods: Established on solubility studies capmul mcm, transcutol-p, labrasol were used as oil, co-surfactant and surfactant respectively. The optimized mucoadhesive microemulsion prepared using water titration method was further characterized for particle size, polydispersity index, zeta potential and conductivity measurements followed by drug content, nasal cilio toxicity and biochemical estimation of the selected formulation.Results: All physicochemical parameters conducted, proved that dlx-hcl microemulsion was appropriate for nasal delivery. Chitosan, used as mucoadhesive polymer demonstrated enhanced retention time of the microemulsion in nasal mucosa with no signs of toxicity and epithelial damage. The particle size and zeta potential were found to be of 200 nm and-15 mV respectively considering the formulation safe for nasal delivery.Conclusion: This formulation strategy can be used as an effective targeting technique for the drugs having low bioavailability and poor brain penetration along with an effective method for the treatment long-term disease like depression

    Preparation and evaluation of floating tablets of pregabalin

    No full text
    <p>Floating tablets of pregabalin were prepared using different concentrations of the gums (xanthan gum and guar gum), Carbopol 974P NF and HPMC K100. Optimized formulations were studied for physical tests, floating time, swelling behavior, <i>in vitro</i> release studies and stability studies. <i>In vitro</i> drug release was higher for tablet batches containing guar and xanthan gum as compared to the batches containing Carbopol 974P NF. Tablet batches were subjected to stability studies and evaluated by different parameters (drug release, drug content, FTIR and DSC studies). The optimized tablet batch was selected for <i>in vivo</i> pharmacodynamic studies (PTZ induced seizures). The results obtained showed that the onset of jerks and clonus were delayed and extensor phase was abolished with time in treated groups. A significant difference (<i>p</i> > 0.05) was observed in control and treated group behavior indicating an excellent activity of the formulation for a longer period (>12 h).</p
    corecore