6,172 research outputs found

    Identifying Demand with Multidimensional Unobservables: A Random Functions Approach

    Get PDF
    We explore the identification of nonseparable models without relying on the property that the model can be inverted in the econometric unobservables. In particular, we allow for infinite dimensional unobservables. In the context of a demand system, this allows each product to have multiple unobservables. We identify the distribution of demand both unconditional and conditional on market observables, which allows us to identify several quantities of economic interest such as the (conditional and unconditional) distributions of elasticities and the distribution of price effects following a merger. Our approach is based on a significant generalization of the linear in random coefficients model that only restricts the random functions to be analytic in the endogenous variables, which is satisfied by several standard demand models used in practice. We assume an (unknown) countable support for the the distribution of the infinite dimensional unobservables.

    Fibers on a graph with local load sharing

    Full text link
    We study a random fiber bundle model with tips of the fibers placed on a graph having co-ordination number 3. These fibers follow local load sharing with uniformly distributed threshold strengths of the fibers. We have studied the critical behaviour of the model numerically using a finite size scaling method and the mean field critical behaviour is established. The avalanche size distribution is also found to exhibit a mean field nature in the asymptotic limit.Comment: 9 pages, 6 figures, To appear in International Journal of Modern Physics

    Linearizability with Ownership Transfer

    Full text link
    Linearizability is a commonly accepted notion of correctness for libraries of concurrent algorithms. Unfortunately, it assumes a complete isolation between a library and its client, with interactions limited to passing values of a given data type. This is inappropriate for common programming languages, where libraries and their clients can communicate via the heap, transferring the ownership of data structures, and can even run in a shared address space without any memory protection. In this paper, we present the first definition of linearizability that lifts this limitation and establish an Abstraction Theorem: while proving a property of a client of a concurrent library, we can soundly replace the library by its abstract implementation related to the original one by our generalisation of linearizability. This allows abstracting from the details of the library implementation while reasoning about the client. We also prove that linearizability with ownership transfer can be derived from the classical one if the library does not access some of data structures transferred to it by the client

    Line junction in a quantum Hall system with two filling fractions

    Get PDF
    We present a microscopic model for a line junction formed by counter or co-propagating single mode quantum Hall edges corresponding to different filling factors. The ends of the line junction can be described by two possible current splitting matrices which are dictated by the conditions of both lack of dissipation and the existence of a linear relation between the bosonic fields. Tunneling between the two edges of the line junction then leads to a microscopic understanding of a phenomenological description of line junctions introduced some time ago. The effect of density-density interactions between the two edges is considered, and renormalization group ideas are used to study how the tunneling parameter changes with the length scale. This leads to a power law variation of the conductance of the line junction with the temperature. Depending on the strength of the interactions the line junction can exhibit two quite different behaviors. Our results can be tested in bent quantum Hall systems fabricated recently.Comment: 9 pages including 4 figure

    Using Jet Substructure at the LHC to Search for the Light Higgs Bosons of the CP-Violating MSSM

    Full text link
    The CP-violating version of the Minimal Supersymmetric Standard Model (MSSM) is an example of a model where experimental data do not preclude the presence of light Higgs bosons in the range around 10 -- 110 GeV. Such light Higgs bosons, decaying almost wholly to b-bbar pairs, may be copiously produced at the LHC, but would remain inaccessible to conventional Higgs searches because of intractable QCD backgrounds. We demonstrate that a significant number of these light Higgs bosons would be boosted strongly enough for the pair of daughter bb-jet pairs to appear as a single `fat' jet with substructure. Tagging such jets could extend the discovery potential at the LHC into the hitherto-inaccessible region for light Higgs bosons.Comment: LaTeX, 33 pages, 5 eps figures and 5 tables embedded. minor changes, to appear in Physical Review
    • …
    corecore