131 research outputs found

    Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    Full text link
    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low frequency limit we use adiabatic theory, while in the high frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light cone like spreading of the particles in real space.Comment: 8 pages, 5 figures; this is the final published versio

    Fidelity, Rosen-Zener Dynamics, Entropy and Decoherence in one dimensional hard-core bosonic systems

    Full text link
    We study the non-equilibrium dynamics of a one-dimensional system of hard core bosons (HCBs) in the presence of an onsite potential (with an alternating sign between the odd and even sites) which shows a quantum phase transition (QPT) from the superfluid (SF) phase to the so-called "Mott Insulator" (MI) phase. The ground state quantum fidelity shows a sharp dip at the quantum critical point (QCP) while the fidelity susceptibility shows a divergence right there with its scaling given in terms of the correlation length exponent of the QPT. We then study the evolution of this bosonic system following a quench in which the magnitude of the alternating potential is changed starting from zero (the SF phase) to a non-zero value (the MI phase) according to a half Rosen Zener (HRZ) scheme or brought back to the initial value following a full Rosen Zener (FRZ) scheme. The local von Neumann entropy density is calculated in the final MI phase (following the HRZ quench) and is found to be less than the equilibrium value (log2\log 2) due to the defects generated in the final state as a result of the quenching starting from the QCP of the system. We also briefly dwell on the FRZ quenching scheme in which the system is finally in the SF phase through the intermediate MI phase and calculate the reduction in the supercurrent and the non-zero value of the residual local entropy density in the final state. Finally, the loss of coherence of a qubit (globally and weekly coupled to the HCB system) which is initially in a pure state is investigated by calculating the time-dependence of the decoherence factor when the HCB chain evolves under a HRZ scheme starting from the SF phase. This result is compared with that of the sudden quench limit of the half Rosen-Zener scheme where an exact analytical form of the decoherence factor can be derived.Comment: To appear in European Physical Journal

    Dynamical localization in a chain of hard core bosons under a periodic driving

    Full text link
    We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed and the system is subjected to periodic \de-function kicks in the staggered on-site potential. We present analytical expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that the current (work done) exhibit a number of dips (peaks) as a function of the driving frequency and eventually saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like region with a group velocity that vanishes when the system is dynamically localized.Comment: 5 pages, and 3 figures. Accepted for publication in PR
    corecore