145 research outputs found

    Chronic garlic administration protects rat heart against oxidative stress induced by ischemic reperfusion injury

    Get PDF
    BACKGROUND: Oxidative stress plays a major role in the biochemical and pathological changes associated with myocardial ischemic-reperfusion injury (IRI). The need to identify agents with a potential for preventing such damage has assumed great importance. Chronic oral administration of raw garlic has been previously reported to augment myocardial endogenous antioxidants. In the present study, the effect of chronic oral administration of raw garlic homogenate on oxidative stress induced by ischemic-reperfusion injury in isolated rat heart was investigated. RESULTS: Raw garlic homogenate (125, 250 and 500 mg/kg once daily for 30 days) was administered orally in Wistar albino rats. Thereafter, hearts were isolated and subjected to IRI (9 min. of global ischemia, followed by 12 min of reperfusion; perfusion with K-H buffer solution; 37°C, 60 mm Hg.). Significant myocyte injury and rise in myocardial TBARS along with reduction in myocardial SOD, catalase, GSH and GPx were observed following IRI. Depletion of myocardial endogenous antioxidants and rise in TBARS were significantly less in the garlic-treated rat hearts. Oxidative stress induced cellular damage as indicated by ultrastructural changes, like disruption of myofilament, Z-band architecture along with mitochondrial changes were significantly less. CONCLUSIONS: The study strongly suggests that chronic garlic administration prevents oxidative stress and associated ultrastructural changes, induced by myocardial ischemic-reperfusion injury

    Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart

    Get PDF
    BACKGROUND: Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart disease. Antioxidants have potent therapeutic effects on both ischemic heart disease and ischemic-reperfusion injury. Information on the effect of PO on ischemic-reperfusion injury is, however, lacking. In the present study, the effect of dietary palm olein oil on oxidative stress associated with IRI was investigated in an isolated rat heart model. Wistar rats (150–200 gm) of either sex were divided into three different groups (n = 16). Rats were fed with palm olein oil supplemented commercial rat diet, in two different doses [5% v / w (PO 5) and 10% v / w (PO 10) of diet] for 30 days. Control rats (C) were fed with normal diet. After 30 days, half the rats from each group were subjected to in vitro myocardial IRI (20 min of global ischemia, followed by 40 min of reperfusion). Hearts from all the groups were then processed for biochemical and histopathological studies. One way ANOVA followed by Bonferroni test was applied to test for significance and values are expressed as mean ± SE (p < 0.05). RESULTS: There was a significant increase in myocardial catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities with no significant change in myocardial thiobarbituric acid reactive substances (TBARS) only in group PO 5 as compared to group C. There was no light microscopic evidence of tissue injury. A significant rise in myocardial TBARS and depletion of myocardial endogenous antioxidants (SOD, CAT and GPx) along with significant myocyte injury was observed in control rats subjected to ischemia-reperfusion (C IR). Hearts from palm olein oil fed rats subjected to ischemia-reperfusion (PO 5 IR and PO 10 IR) were protected from increase in TBARS and depletion of endogenous antioxidants as compared to C IR group. No significant myocyte injury was present in the treated groups. CONCLUSIONS: The present study demonstrated for the first time that dietary palm olein oil protected rat heart from oxidative stress associated with ischemic-reperfusion injury

    Protection against acute adriamycin-induced cardiotoxicity by garlic: Role of endogenous antioxidants and inhibition of TNF-α expression

    Get PDF
    BACKGROUND: Oxidative stress is the major etiopathological factor in adriamycin-induced cardiotoxicity. Relatively low amounts of endogenous antioxidant makes the heart vulnerable to oxidative stress-induced damage. Chronic oral administration of garlic has been reported to enhance the endogenous antioxidants of heart. We hypothesized that garlic-induced enhanced cardiac antioxidants may offer protection against acute adriamycin-induced cardiotoxicity. RESULTS: Rats were either administered freshly prepared garlic homogenate (250 and 500 mg/kg daily, orally, for 30 days) or probucol (cumulative dose, 120 mg/kg body weight divided in 12, i.p. over a period of 30 days) or double distilled water (vehicle), followed by a single dose of adriamycin (30 mg/kg i.p.). In the adriamycin group, increased oxidative stress was evidenced by a significant increase in myocardial TBARS (thiobarbituric acid reactive substances) and decrease in myocardial SOD (superoxide dismutase), catalase and GPx (glutathione peroxidase) activity. Histopathological studies showed focal as well as subendocardial myocytolysis with infiltration of macrophages, lymphocytes and edema. Immunocytochemistry showed marked expression of TNF-α (tumor necrosis factor-alpha) in the myocardium. Increase in myocardial TBARS and decrease in endogenous antioxidants by adriamycin was prevented significantly in the garlic treated rat hearts, which was comparable to the probucol-treated group. Histopathological evidence of protection was also evident in both garlic-treated and probucol-treated groups. Probucol, 250 mg/kg and 500 mg/kg of garlic reduced adriamycin induced TNF-α expression in the myocardium and was associated with reduced myocyte injury. CONCLUSIONS: It is concluded that chronic garlic administration prevents acute adriamycin-induced cardiotoxicity and decreases myocardial TNF-α expression

    Surface modifications of biodegradable polymeric nanoparticles and their characterization by advanced electron microscopy techniques

    Get PDF
    Polymeric nanoparticles have been the focus for nanocarrier preparation in numerous biomedical applications such as cancer treatment, disease diagnosis, vaccination, in the last two decades. They have been variably surface modified using copolymers, Polyethylene glycol (PEG), dextran, cyclodextrin, cytokines, small molecules to improve their efficiency and efficacy. The resulting nano-formulations include polymer-protein conjugate, polymeric micelle, polymer-small molecule conjugate, dendrimer, polymeric vesicles, nano-hybrids, hydrogels etc. These may have intrinsic immunogenicity and require accurate characterization in order to improve their pharmacological targeting, pharmacokinetic profiles and to reduce adverse reactions. Therefore, we have reviewed the polymeric nanoparticles and the electron microscopy techniques available for their characterization in the context of their surface modifications and functionalization

    Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Get PDF
    Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774) cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 μg/mL) and up to three hours of exposure, whereas at higher concentrations (300–500 μg/mL) and prolonged (six hours) exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS) indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury induced by nanoparticles studied using the lactate dehydrogenase assay, showed both concentration- and time-dependent damage. Thus, this study concluded that use of a low optimum concentration of superparamagnetic iron oxide nanoparticles is important for avoidance of oxidative stress-induced cell injury and death

    Increased incidence of glomerulonephritis following spleno-renal shunt surgery in non-cirrhotic portal fibrosis

    Get PDF
    Increased incidence of glomerulonephritis following spleno-renal shunt surgery in non-cirrhotic portal fibrosis. In a prospective study of 200 non-cirrhotic portal fibrosis (NCPF) patients, 7% had mild proteinuria and their renal biopsies showed mild mesangial proliferative glomerulonephritis (mes-PGN). The remaining 93% biopsies were normal. However, following the insertion of a spleno-renal shunt (SRS) for portal hypertension 32% of these patients developed nephrotic syndrome in five years. Renal histology revealed mesangiocapillary glomerulonephritis (MCGN) (18.5%), mes-PGN (9%), minimal change nephropathy (3%), and chronic sclerosing GN (1.5%). Immunofluorescence showed granular deposition of IgA and C3. IgA2 was the predominant form of Ig in the glomerular deposits, indicating that IgA in the immune complexes was derived from the gastrointestinal tract. Electron microscopy revealed electron dense deposits in the mesangium. In contrast to the NCPF patients who underwent a SRS for portal hypertension, the 200 patients in our study who underwent spleno-renal shunting because of extra hepatic portal obstruction did not have renal disease, nor did they develop renal disease during the five-year post-operative follow-up. Fifty percent of the glomerulonephritis (GN) in the NCPF group progressed to renal failure in five years; 46.6% continued to have proteinuria. Low serum complement, C3 (40%) and circulating immune complexes (14.8%) were detected in the glomerulonephritis group. Our study shows that: (i) there is a high rate of the occurrence of GN following SRS in NCPF patients, but not in those with normal livers; (ii) the type of GN is primarily IgA nephropathy; and (iii) the GN could be the result of defective hepatic reticuloendothelial function in the NCPF group that is worsened by the shunting procedure

    Differential induction of Leishmania donovani bi-subunit topoisomerase I–DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I

    Get PDF
    Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I

    Expression of biomarkers modulating prostate cancer angiogenesis: Differential expression of annexin II in prostate carcinomas from India and USA

    Get PDF
    BACKGROUND: Prostate cancer (PCa) incidences vary with genetic, geographical and ethnic dietary background of patients while angiogenesis is modulated through exquisite interplay of tumor-stromal interactions of biological macromolecules. We hypothesized that comprehensive analysis of four biomarkers modulating angiogenesis in PCa progression in two diverse populations might explain the variance in the incidence rates. RESULTS: Immunohistochemical analysis of 42 PCa biopsies reveals that though Anx-II expression is lost in both the Indian and American population with Gleason scores (GS) ranging between 6 and 10, up to 25 % of cells in the entire high grade (GS > 8) PD PCa samples from US show intense focal membrane staining for Anx-II unlike similarly graded specimens from India. Consistent with this observation, the prostate cancer cell lines PC-3, DU-145 and MDA PCa 2A, but not LNCaP-R, LNCAP-UR or MDA PCa 2B cell lines, express Anx-II. Transcriptional reactivation of Anx-II gene with Aza-dC could not entirely account for loss of Anx-II protein in primary PCa. Cyclooxygenase-2 (COX-2) was moderately expressed in most of high grade PIN and some MD PCa and surrounding stroma. COX-2 was not expressed in PD PCa (GS ~7–10), while adjacent smooth muscles cells stained weakly positive. Decorin expression was observed only in high grade PIN but not in any of the prostate cancers, atrophy or BPH while stromal areas of BPH stained intensively for DCN and decreased with advancing stages of PCa. Versican expression was weak in most of the MD PCa, moderate in all of BPH, moderately focal in PD PC, weak and focal in PIN, atrophy and adjacent stroma. CONCLUSIONS: Expression of pro- and anti-angiogenic modulators changes with stage of PCa but correlates with angiogenic status. Focal membrane staining of Anx-II reappears in high grade PCa specimens only from US indicating differential expression of Anx-II. COX-2 stained stronger in American specimens compared to Indian specimens. The sequential expression of DCN and VCN in progressive stages was similar in specimens from India and USA indicating no population-based differences. The mechanistic and regulatory role of Anx-II in PCa progression warrants further investigation
    corecore