20 research outputs found

    Classification Models of Idiopathic Pulmonary Fibrosis Patients

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal interstitial lung disease with no current cure. Progression of IPF is difficult to predict as the clinical course can be highly variable and range from a rapidly deteriorating state to a relatively stable state, or may be characterized by a slow progressive decline. Therefore, the need for an accurate diagnosis and improved tools for monitoring and managing IPF is of paramount importance, all for understanding the mitochondrial structure and the function played in the IPF. Mitochondrial DNA copy number (MtDCN) has been correlated with mortality in IPF patients and is a source of potentially clinically relevant information. We investigated the effects of various expiratory variables on MtDCN via multiple linear regression models. The models and their theoretical framework are presented under a descriptive and then analytic approach to investigate the complex and impact causes of IPF. Generalized linear model (GLM) based boosting is fitted before and after imputing the missing data. The Bayesian Hierarchical logistic models with categorical response variables that were created using carefully chosen cut-off points to classify the patients. This research provides an opportunity for novel patient surveillances

    Use of fractional exhaled nitric oxide to guide the treatment of asthma an official american thoracic society clinical practice guideline

    Get PDF
    Background: The fractional exhaled nitric oxide (FENO) test is a point-of-care test that is used in the assessment of asthma.Objective: To provide evidence-based clinical guidance on whether FENO testing is indicated to optimize asthma treatment in patients with asthma in whom treatment is being considered.Methods: An international, multidisciplinary panel of experts was convened to form a consensus document regarding a single question relevant to the use of FENO. The question was selected from three potential questions based on the greatest perceived impact on clinical practice and the unmet need for evidencebased answers related to this question. The panel performed systematic reviews of published randomized controlled trials between 2004 and 2019 and followed the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) evidence-to-decision framework to develop recommendations. All panel members evaluated and approved the recommendations.Main Results: After considering the overall low quality of the evidence, the panel made a conditional recommendation for FENO-based care. In patients with asthma in whom treatment is being considered, we suggest that FENO is beneficial and should be used in addition to usual care. This judgment is based on a balance of effects that probably favors the intervention; the moderate costs and availability of resources, which probably favors the intervention; and the perceived acceptability and feasibility of the intervention in daily practice.Conclusions: Clinicians should consider this recommendation to measure FENO in patients with asthma in whom treatment is being considered based on current best available evidence. </p

    Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies

    Full text link
    Photograph of a scene in Hafer Park after a snow storm

    High-density Lipoproteins and Apolipoprotein A-I: Potential New Players in the Prevention and Treatment of Lung Disease

    Get PDF
    Apolipoprotein A-I (apoA-I) and high-density lipoproteins (HDL) mediate reverse cholesterol transport out of cells. Furthermore, HDL has additional protective functions, which include anti-oxidative, anti-inflammatory, anti-apoptotic, and vasoprotective effects. In contrast, HDL can become dysfunctional with a reduction in both cholesterol efflux and anti-inflammatory properties in the setting of disease or the acute phase response. These paradigms are increasingly being recognized to be active in the pulmonary system, where apoA-I and HDL have protective effects in normal lung health, as well as in a variety of disease states, including acute lung injury, asthma, chronic obstructive pulmonary disease, lung cancer, pulmonary arterial hypertension, pulmonary fibrosis, and viral pneumonia. Similar to observations in cardiovascular disease, however, HDL may become dysfunctional and contribute to disease pathogenesis in respiratory disorders. Furthermore, synthetic apoA-I mimetic peptides have been shown to have protective effects in animal models of acute lung injury, asthma, pulmonary hypertension, and influenza pneumonia. These findings provide evidence to support the concept that apoA-I mimetic peptides might be developed into a new treatment that can either prevent or attenuate the manifestations of lung diseases, such as asthma. Thus, the lung is positioned to take a page from the cardiovascular disease playbook and utilize the protective properties of HDL and apoA-I as a novel therapeutic approach

    The Potential Contributions of Lethal and Edema Toxins to the Pathogenesis of Anthrax Associated Shock

    Get PDF
    Outbreaks of Bacillus anthracis in the US and Europe over the past 10 years have emphasized the health threat this lethal bacteria poses even for developed parts of the world. In contrast to cutaneous anthrax, inhalational disease in the US during the 2001 outbreaks and the newly identified injectional drug use form of disease in the UK and Germany have been associated with relatively high mortality rates. One notable aspect of these cases has been the difficulty in supporting patients once shock has developed. Anthrax bacilli produce several different components which likely contribute to this shock. Growing evidence indicates that both major anthrax toxins may produce substantial cardiovascular dysfunction. Lethal toxin (LT) can alter peripheral vascular function; it also has direct myocardial depressant effects. Edema toxin (ET) may have even more pronounced peripheral vascular effects than LT, including the ability to interfere with the actions of conventional vasopressors. Additionally, ET also appears capable of interfering with renal sodium and water retention. Importantly, the two toxins exert their actions via quite different mechanisms and therefore have the potential to worsen shock and outcome in an additive fashion. Finally, both toxins have the ability to inhibit host defense and microbial clearance, possibly contributing to the very high bacterial loads noted in patients dying with anthrax. This last point is clinically relevant since emerging data has begun to implicate other bacterial components such as anthrax cell wall in the shock and organ injury observed with infection. Taken together, accumulating evidence regarding the potential contribution of LT and ET to anthrax-associated shock supports efforts to develop adjunctive therapies that target both toxins in patients with progressive shock
    corecore