123 research outputs found

    Quantum Hall Effect induced by electron-electron interaction in disordered GaAs layers with 3D spectrum

    Full text link
    It is shown that the observed Quantum Hall Effect in epitaxial layers of heavily doped n-type GaAs with thickness (50-140 nm) larger the mean free path of the conduction electrons (15-30 nm) and, therefore, with a three-dimensional single-particle spectrum is induced by the electron-electron interaction. The Hall resistance R_xy of the thinnest sample reveals a wide plateau at small activation energy E_a=0.4 K found in the temperature dependence of the transverse resistance R_xx. The different minima in the transverse conductance G_xx of the different samples show a universal temperature dependence (logarithmic in a large range of rescaled temperatures T/T_0) which is reminiscent of electron-electron-interaction effects in coherent diffusive transport.Comment: 6 pages, 3 figures, 1 tabl

    How minor structural changes generate major consequences in photophysical properties of RE coordination compounds; resonance effect, LMCT state

    Get PDF
    Lanthanide coordination compounds of the formula Na[Ln(L)4] (1Ln), where Ln ¼ La3þ, Eu3þ, Gd3þ, Tb3þ, L ¼ [L] and HL ¼ dimethyl(4-methylphenylsulfonyl)amidophosphate, were synthesized. Their structural and spectroscopic properties were discussed in detail based on X-ray diffraction measurements, IR spectroscopy, absorption and emission spectroscopy at 293 and 77 K and theoretical calculations of the intramolecular energy transfer (IET) rates. DFT calculations were used to investigate the 1Ln electronic properties required to calculate the transition rates. 30 and 22 pathways of intramolecular nonradiative energy transfer were examined in the case of 1Eu and 1Tb, respectively. It is shown that the main pathway for sensitization of the lanthanide emission is either the triplet (1Eu) or singlet (1Tb) transfer, occurring mainly through the exchange mechanism. The energy rates for energy transfer from S1 and T1 equal WS ¼ 1:53 105 s 1 (1Eu), WT ¼ 5:14 106 s 1 (1Eu) and WS ¼ 4:09 107 s 1 (1Tb), WT ¼ 6:88 105 s 1 (1Tb). The crucial role of the 7F5 level in the energy transfer process of 1Tb and the participation of the LMCTstate in the depopulation of the ligand singlet state of 1Eu were demonstrated. The influence of the resonance effect on the splitting of the 7F1 level in 1Eu was analyzed. By comparing the properties of 1Ln with the properties of 2Ln coordination compounds, sharing the same ligand and crystallizing in the same crystallographic system (monoclinic), but with a different space group, it is demonstrated how slight structural changes can affect the photophysical properties of Ln compounds.publishe

    The Relativistic Linear Singular Oscillator

    Full text link
    Exactly-solvable model of the linear singular oscillator in the relativistic configurational space is considered. We have found wavefunctions and energy spectrum for the model under study. It is shown that they have correct non-relativistic limits.Comment: 14 pages, 12 figures in eps format, IOP style LaTeX file (revised taking into account referees suggestions

    Measurement of the e+eK+Kπ+πe^+e^- \to K^+K^-\pi^+\pi^- cross section with the CMD-3 detector at the VEPP-2000 collider

    Get PDF
    The process e+eK+Kπ+πe^+e^- \to K^+K^-\pi^+\pi^- has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+ee^+e^- collider. Using about 24000 selected events, the e+eK+Kπ+πe^+e^- \to K^+K^-\pi^+\pi^- cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of K+Kπ+πK^+K^-\pi^+\pi^- production dynamics has been performed

    Study of the process e+eppˉe^+e^-\to p\bar{p} in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

    Get PDF
    Using a data sample of 6.8 pb1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+ee^+e^- collider we select about 2700 events of the e+eppˉe^+e^- \to p\bar{p} process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio GE/GM=1.49±0.23±0.30|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30

    Electroproduction, photoproduction, and inverse electroproduction of pions in the first resonance region

    Full text link
    Methods are set forth for determining the hadron electromagnetic structure in the sub-NNˉN\bar{N}-threshold timelike region of the virtual-photon ``mass'' and for investigating the nucleon weak structure in the spacelike region from experimental data on the process πNe+eN\pi N\to e^+e^- N at low energies. These methods are formulated using the unified description of photoproduction, electroproduction, and inverse electroproduction of pions in the first resonance region in the framework of the dispersion-relation model and on the basis of the model-independent properties of inverse electroproduction. Applications of these methods are also shown.Comment: The revised published version; Revtex4, 18 pages, 6 figure
    corecore