35 research outputs found

    Amyloid β induces early changes in the ribosomal machinery, cytoskeletal organization and oxidative phosphorylation in retinal photoreceptor cells

    Full text link
    Amyloid β (Aβ) accumulation and its aggregation is characteristic molecular feature of the development of Alzheimer’s disease (AD). More recently, Aβ has been suggested to be associated with retinal pathology associated with AD, glaucoma and drusen deposits in age related macular degeneration (AMD). In this study, we investigated the proteins and biochemical networks that are affected by Aβ in the 661 W photoreceptor cells in culture. Time and dose dependent effects of Aβ on the photoreceptor cells were determined utilizing tandem mass tag (TMT) labeling-based quantitative mass-spectrometric approach. Bioinformatic analysis of the data revealed concentration and time dependent effects of the Aβ peptide stimulation on various key biochemical pathways that might be involved in mediating the toxicity effects of the peptide. We identified increased Tau phosphorylation, GSK3β dysregulation and reduced cell viability in cells treated with Aβ in a dose and time dependent manner. This study has delineated for the first-time molecular networks in photoreceptor cells that are impacted early upon Aβ treatment and contrasted the findings with a longer-term treatment effect. Proteins associated with ribosomal machinery homeostasis, mitochondrial function and cytoskeletal organization were affected in the initial stages of Aβ exposure, which may provide key insights into AD effects on the photoreceptors and specific molecular changes induced by Aβ peptide

    Heterostructure photonic crystal multichannel drop filter based on microcavities and ring resonators

    No full text
    In this paper, a heterostructure photonic crystal multichannel drop filter based on ring resonators and microcavities is presented. This structure has been made in the form of a two-dimensional square lattice with two regions with refractive indexes of 3.464 and 3.86. The refractive indexes are so chosen as to allow the easy and practical fabrication of the device. The presented heterostructure photonic crystal multichannel drop filter consists of a waveguide, two ring resonators and a microcavity. This microcavity is placed at the end of the bus waveguide. The ring resonators have been installed in two regions with different refractive indexes. These ring resonators act as energy couplers, and at their resonance frequencies, they capture the electromagnetic energy which is transmitted in the bus waveguide. Filter characteristics have been obtained by using the finite difference time domain method. Finally, we will demonstrate that in the optimal structure, at ports B and D (vertical), drop efficiencies close to 90% and 67%, respectively, can be obtained within the third communication window, and at port C (horizontal), an efficiency of almost 80% can be achieved within the second communication window

    National Maternal Mortality Surveillance System in Iran

    No full text
    "nFinding the root causes of maternal mortality plays a significant role in identifying the status of development in the society and in expressing the current situation of maternal health and the adoption of appropriate measures towards its improve­ment. With   the above in mind and for the purpose of fulfillment of objectives and national and international commitments, the National Maternal Mortality Surveillance System was designed in 2000 and implemented from 2001 through out the coun­try in Iran. Implementation of this program aimed at identifying the  factors contributing to maternal mortality during prena­tal, delivery and postnatal periods through discovering the process that each mother has followed until her death, identify­ing avoidable causes of death and designing interventions in order to solve problems and prevent occurring of simi­lar deaths

    A Seed Coating Delivery System for Bio-Based Biostimulants to Enhance Plant Growth

    No full text
    A novel delivery method for the application of bio-based biostimulants as seed coatings was developed using different sources of liquid and powder forms of vermicompost and soy flour. Micronized vermicompost (MVC) and soy flour (SF) were mixed in different combinations as dry seed coating blends and applied using rotary pan seed coating equipment. The physical properties of coated seeds were measured, and as binder concentration increased, coating strength increased. The rates and percentages of germination of the newly developed coating formulations of SF+MVC did not decrease the germination parameters and were not significantly different than the control. However, the SF, SF with concentrated vermicompost extract, and SF + MVC from dairy manure increased the seedling vigor index by 24, 30, and 39 percent, respectively, compared to the control. Plant biometric parameters and nitrogen uptake per plant were also significantly higher for SF and SF+MVC coated seeds than the control, in a greenhouse environment. This is the first seed coating study to show an enhancement of plant growth with vermicompost, and vermicompost in combination with a plant-based protein that serves as a dry seed coating binder and biostimulant, respectively. Seed coatings developed in this study can serve as a model for development of the delivery systems of seeds for the application of bio-based biostimulants to enhance early plant growth

    Effects of low level laser therapy on the prognosis of split-thickness skin graft in type 3 burn of diabetic patients: a case series

    No full text
    Significant populations in burn centers are diabetic burn patients. Healing process in these patients is more difficult due to diabetes complications. The gold standard treatment for patients with grade 3 burn ulcer is split-thickness skin grafting (STSG), but in the diabetic patients, the rate of graft failure and amputation is high due to impaired tissue perfusion. The technique of low level laser therapy (LLLT) improves tissue perfusion and fibroblast proliferation, increases collagen synthesis, and accelerates wound healing. The purpose of this case report is introducing a new therapeutic method for accelerating healing with better prognosis in these patients. The protocols and informed consent were reviewed according to the Medical Ethics, Board of Shahid Beheshti Medical Sciences (IR.SBMU.RAM.REC.13940.363). Diabetic type 2 patients with 13 grade 3 burn ulcers, candidate for amputation, were enrolled in the study. We used a 650-nm red laser light, 2 J/Cm for the bed of the ulcer and an 810-nm infrared laser light 6 J/Cm2 for the margins along with intravenous laser therapy with a 660-nm red light, before and after STSG for treating grade 3 burn ulcers in 13 diabetic ulcers. The results of this study showed complete healing in the last 8 weeks for all patients who were candidates for amputation. In this case series, we present 13 cases of diabetic ulcer with type 3 burn wound, candidate for amputation, who healed completely using LLLT and STSG. This is the first time that these two techniques are combined for treatment of burn ulcer in diabetic patients. Using LLLT with STSG might be a promising treatment for burn victims especially diabetic patients. © 2016, Springer-Verlag London

    Key Genes and Biochemical Networks in Various Brain Regions Affected in Alzheimer\u27s Disease.

    Full text link
    Alzheimer\u27s disease (AD) is one of the most complicated progressive neurodegenerative brain disorders, affecting millions of people around the world. Ageing remains one of the strongest risk factors associated with the disease and the increasing trend of the ageing population globally has significantly increased the pressure on healthcare systems worldwide. The pathogenesis of AD is being extensively investigated, yet several unknown key components remain. Therefore, we aimed to extract new knowledge from existing data. Ten gene expression datasets from different brain regions including the hippocampus, cerebellum, entorhinal, frontal and temporal cortices of 820 AD cases and 626 healthy controls were analyzed using the robust rank aggregation (RRA) method. Our results returned 1713 robust differentially expressed genes (DEGs) between five brain regions of AD cases and healthy controls. Subsequent analysis revealed pathways that were altered in each brain region, of which the GABAergic synapse pathway and the retrograde endocannabinoid signaling pathway were shared between all AD affected brain regions except the cerebellum, which is relatively less sensitive to the effects of AD. Furthermore, we obtained common robust DEGs between these two pathways and predicted three miRNAs as potential candidates targeting these genes; hsa-mir-17-5p, hsa-mir-106a-5p and hsa-mir-373-3p. Three transcription factors (TFs) were also identified as the potential upstream regulators of the robust DEGs; ELK-1, GATA1 and GATA2. Our results provide the foundation for further research investigating the role of these pathways in AD pathogenesis, and potential application of these miRNAs and TFs as therapeutic and diagnostic targets

    32-Channel Detection Unit for Combined XRF-XRD in Mining Transportable Applications

    No full text
    We present the design and characterization of a detection unit for simultaneous and combined XRF and XRD analysis of powder mineralogical samples. Arrays of 32 silicon microstrips are coupled to two 16-channel CUBE preamplifiers targeting an energy resolution below 200 eV at 6 keV with moderate cooling. The compact detection module will be mounted on a goniometer inside a suitcase-sized analyzer to be operated in mining sites
    corecore