21 research outputs found

    21st Century Cardio-Oncology: Identifying Cardiac Safety Signals in the Era of Personalized Medicine.

    Get PDF
    Cardiotoxicity is a well-established complication of oncology therapies. Cardiomyopathy resulting from anthracyclines is a classic example. In the past decade, an explosion of novel cancer therapies, often targeted and more specific than traditional therapies, has revolutionized oncology therapy and dramatically changed cancer prognosis. However, some of these therapies have introduced an assortment of cardiovascular (CV) complications. At times, these devastating outcomes have only become apparent after drug approval and have limited the use of potent therapies. There is a growing need for better testing platforms, both for CV toxicity screening, as well as for elucidating mechanisms of cardiotoxicities of approved cancer therapies. This review discusses the utility of nonclinical models (in vitro, in vivo, & in silico) available and highlights recent advancements in modalities like human stem cell-derived cardiomyocytes for developing more comprehensive cardiotoxicity testing and new means of cardioprotection with targeted anticancer therapies

    Myocarditis Associated with Immune Checkpoint Inhibitors: An Expert Consensus on Data Gaps and a Call to Action.

    Get PDF
    Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for cancer. Due to the mechanism of action of ICIs, inflammatory reactions against normal tissue were an anticipated side effect of these agents; these immune-related adverse events have been documented and are typically low grade and manageable. Myocarditis has emerged as an uncommon but potentially life-threatening adverse reaction in patients treated with ICIs. Assessment and characterization of ICI-associated myocarditis is challenging because of its low incidence and protean manifestations. Nevertheless, the seriousness of ICI-associated myocarditis justifies a coordinated effort to increase awareness of this syndrome, identify patients who may be at risk, and enable early diagnosis and appropriate treatment. The Checkpoint Inhibitor Safety Working Group, a multidisciplinary committee of academic, industry, and regulatory partners, convened at a workshop hosted by Project Data Sphere, LLC, on December 15, 2017. This meeting aimed to evaluate the current information on ICI-associated myocarditis, determine methods to collect and share data on this adverse reaction, and establish task forces to close the identified knowledge gaps. In this report, we summarize the workshop findings and proposed steps to address the impact of ICI-associated myocarditis in patients with cancer

    Updated standardized definitions for efficacy endpoints in adjuvant breast cancer clinical trials: STEEP Version 2.0

    Get PDF
    Purpose The Standardized Definitions for Efficacy End Points (STEEP) criteria, established in 2007, provide standardized definitions of adjuvant breast cancer clinical trial end points. Given the evolution of breast cancer clinical trials and improvements in outcomes, a panel of experts reviewed the STEEP criteria to determine whether modifications are needed.Methods We conducted systematic searches of ClinicalTrials.gov for adjuvant systemic and local-regional therapy trials for breast cancer to investigate if the primary end points reported met STEEP criteria. On the basis of common STEEP deviations, we performed a series of simulations to evaluate the effect of excluding non-breast cancer deaths and new nonbreast primary cancers from the invasive disease-free survival end point.Results Among 11 phase III breast cancer trials with primary efficacy end points, three had primary end points that followed STEEP criteria, four used STEEP definitions but not the corresponding end point names, and four used end points that were not included in the original STEEP manuscript. Simulation modeling demonstrated that inclusion of second nonbreast primary cancer can increase the probability of incorrect inferences, can decrease power to detect clinically relevant efficacy effects, and may mask differences in recurrence rates, especially when recurrence rates are low.Conclusion We recommend an additional end point, invasive breast cancer-free survival, which includes all invasive disease-free survival events except second nonbreast primary cancers. This end point should be considered for trials in which the toxicities of agents are well-known and where the risk of second primary cancer is small. Additionally, we provide end point recommendations for local therapy trials, low-risk populations, noninferiority trials, and trials incorporating patient-reported outcomes
    corecore