124 research outputs found
Identification of key upregulated genes involved in foam cell formation and the modulatory role of statin therapy
Background: We aimed to investigate the possible effect of statins on important genes/proteins involved in foam cell formation.
Methods: The gene expression profile of the GSE9874, GSE54666, and GSE7138 from the Omnibus database were usedto identify genes involved in foam cell formation. The protein-protein interaction (PPI) network and MCODE analysis of the intersection of three databases were analyzed. We used molecular docking analysis to investigate the possible interaction of different statins with the overexpressed hub genes obtained from PPI analysis.
Results: The intersection among the three datasets showed 54 upregulated and 26 down-regulated genes. The most critical overexpressed genes/proteins obtained as hub genes included: G6PD, NPC1, ABCA1, ABCG1, PGD, PLIN2, PPAP2B, and TXNRD1 based on PPI analysis. Functional enrichment analysis of 81 intersection DEGs at the biological process level focusing on the cholesterol metabolic process, secondary alcohol biosynthetic process and the cholesterol biosynthetic process. Under cellular components, the analysis confirmed that these 81 intersection DEGs were mainly applied in endoplasmic reticulum membrane, lysosome and lytic vacuole. The molecular functions were identified as sterol binding, oxidoreductase activity and NADP binding. The molecular docking showed that all statins appear to affect important protein targets overexpressed in foam cell formation. However, lipophilic statins, especially pitavastatin and lovastatin, had a greater effect than hydrophilic statins. The most significant protein target of all the overexpressed genes interacting with all statin types was ABCA1.
Conclusion: The effect of lipophilic statins was shown for several critical proteins in foam cell formation.</p
Curcumin and ferroptosis: a promising target for disease prevention and treatment
Ferroptosis is a recently identified form of cell death characterized by iron accumulation and lipid peroxidation. Unlike apoptosis, necrosis, and autophagy, ferroptosis operates through a distinct molecular pathway. Curcumin, derived from turmeric rhizomes, is a natural compound with diverse therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer properties. Growing evidence suggests that curcumin possesses both pro-oxidant and antioxidant properties, which can vary depending on the cell type. In this review, we explore the relationship between the effects of curcumin and the molecular mechanisms underlying the ferroptosis signaling pathway, drawing from current in vivo and in vitro research. Curcumin has been found to induce ferroptosis in cancer cells while acting as an inhibitor of ferroptosis in tissue injuries. Notably, curcumin treatment leads to alterations in key ferroptosis markers, underscoring its significant impact on this process. Nonetheless, further research focused on elucidating this important attribute of turmeric is crucial for advancing disease treatment </p
Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.</p
Target deconvolution of fenofibrate in nonalcoholic fatty liver disease using bioinformatics analysis
Background: Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of liver damage, affecting ~25% of the global population. NAFLD comprises a spectrum of liver pathologies, from hepatic steatosis to nonalcoholic steatohepatitis (NASH), and may progress to liver fibrosis and cirrhosis. The presence of NAFLD correlates with metabolic disorders such as hyperlipidemia, obesity, blood hypertension, cardiovascular, and insulin resistance. Fenofibrate is an agonist drug for peroxisome proliferator-activated receptor alpha (PPARα), used principally for treatment of hyperlipidemia. However, fenofibrate has recently been investigated in clinical trials for treatment of other metabolic disorders such as diabetes, cardiovascular disease, and NAFLD. The evidence to date indicates that fenofibrate could improve NAFLD. While PPARα is considered to be the main target of fenofibrate, fenofibrate may exert its effect through impact on other genes and pathways thereby alleviating, and possibly reversing, NAFLD. In this study, using bioinformatics tools and gene-drug, gene-diseases databases, we sought to explore possible targets, interactions, and pathways involved in fenofibrate and NAFLD.
Methods: We first determined significant protein interactions with fenofibrate in the STITCH database with high confidence (0.7). Next, we investigated the identified proteins on curated targets in two databases, including the DisGeNET and DISEASES databases, to determine their association with NAFLD. We finally constructed a Venn diagram for these two collections (curated genes-NAFLD and fenofibrate-STITCH) to uncover possible primary targets of fenofibrate. Then, Gene Ontology (GO) and KEGG were analyzed to detect the significantly involved targets in molecular function, biological process, cellular component, and biological pathways. A P value
Results: We constructed two collections, one with 80 protein-drug interactions and the other with 95 genes associated with NAFLD. Using the Venn diagram, we identified 11 significant targets including LEP, SIRT1, ADIPOQ, PPARA, SREBF1, LDLR, GSTP1, VLDLR, SCARB1, MMP1, and APOC3 and then evaluated their biological pathways. Based on Gene Ontology, most of the targets are involved in lipid metabolism, and KEGG enrichment pathways showed the PPAR signaling pathway, AMPK signaling pathway, and NAFLD as the most significant pathways. The interrogation of those targets on authentic disease databases showed they were more specific to both steatosis and steatohepatitis liver injury than to any other diseases in these databases. Finally, we identified three significant genes, APOC3, PPARA, and SREBF1, that showed robust drug interaction with fenofibrate.
Conclusion: Fenofibrate may exert its effect directly or indirectly, via modulation of several key targets and pathways, in the treatment of NAFLD.</p
Additional file 2 of MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: a systematic review and meta-analysis
Additional file 2: Table S1, S2 and Figure S1–S43
A golden shield: the protective role of curcumin against liver fibrosis
Several chronic liver injuries can result in liver fibrosis, a wound-healing response defined by an excessive buildup of diffuse extracellular matrix (ECM). Liver fibrosis may progress to liver cirrhosis, liver failure, or hepatocellular carcinoma. Many cellular routes are implicated in the fibrosis process; however, hepatic stellate cells appear to be the main cell type involved. Curcumin, a polyphenolic substance extracted from the Curcuma longa plant, has a diversity of pharmacologic impacts, including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic actions. The anti-fibrotic property of curcumin is less clear, but curcumin's ability to influence inflammatory cytokines, inflammatory pathways, the expression of pro-apoptotic (up-regulated) and anti-apoptotic (down-regulated) proteins, and its ability to lower oxidative stress likely underlie its anti-fibrotic properties. In this review, we investigate and analyze the impact of curcumin on several disorders that lead to liver fibrosis, and discuss the therapeutic applications of curcumin for these disorders.</p
Therapeutic role of curcumin in diabetes: an analysis based on bioinformatic findings
Background: Diabetes is an increasingly prevalent global disease caused by the impairment in insulin production or insulin function. Diabetes in the long term causes both microvascular and macrovascular complications that may result in retinopathy, nephropathy, neuropathy, peripheral arterial disease, atherosclerotic cardiovascular disease, and cerebrovascular disease. Considerable effort has been expended looking at the numerous genes and pathways to explain the mechanisms leading to diabetes-related complications. Curcumin is a traditional medicine with several properties such as being antioxidant, anti-inflammatory, anti-cancer, and anti-microbial, which may have utility for treating diabetes complications. This study, based on the system biology approach, aimed to investigate the effect of curcumin on critical genes and pathways related to diabetes.
Methods: We first searched interactions of curcumin in three different databases, including STITCH, TTD, and DGIdb. Subsequently, we investigated the critical curated protein targets for diabetes on the OMIM and DisGeNET databases. To find important clustering groups (MCODE) and critical hub genes in the network of diseases, we created a PPI network for all proteins obtained for diabetes with the aid of a string database and Cytoscape software. Next, we investigated the possible interactions of curcumin on diabetes-related genes using Venn diagrams. Furthermore, the impact of curcumin on the top scores of modular clusters was analysed. Finally, we conducted biological process and pathway enrichment analysis using Gene Ontology (GO) and KEGG based on the enrichR web server.
Results: We acquired 417 genes associated with diabetes, and their constructed PPI network contained 298 nodes and 1651 edges. Next, the analysis of centralities in the PPI network indicated 15 genes with the highest centralities. Additionally, MCODE analysis identified three modular clusters, which highest score cluster (MCODE 1) comprises 19 nodes and 92 edges with 10.22 scores. Screening curcumin interactions in the databases identified 158 protein targets. A Venn diagram of genes related to diabetes and the protein targets of curcumin showed 35 shared proteins, which observed that curcumin could strongly interact with ten of the hub genes. Moreover, we demonstrated that curcumin has the highest interaction with MCODE1 among all MCODs. Several significant biological pathways in KEGG enrichment associated with 35 shared included the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, PI3K-Akt signaling pathway, TNF signaling, and JAK-STAT signaling pathway. The biological processes of GO analysis were involved with the cellular response to cytokine stimulus, the cytokine-mediated signaling pathway, positive regulation of intracellular signal transduction and cytokine production in the inflammatory response.
Conclusion: Curcumin targeted several important genes involved in diabetes, supporting the previous research suggesting that it may have utility as a therapeutic agent in diabetes.</p
Additional file 1 of MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: a systematic review and meta-analysis
Additional file 1: Detailed search strategy
Curcumin and ferroptosis: a promising target for disease prevention and treatment
Ferroptosis is a recently identified form of cell death characterized by iron accumulation and lipid peroxidation. Unlike apoptosis, necrosis, and autophagy, ferroptosis operates through a distinct molecular pathway. Curcumin, derived from turmeric rhizomes, is a natural compound with diverse therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer properties. Growing evidence suggests that curcumin possesses both pro-oxidant and antioxidant properties, which can vary depending on the cell type. In this review, we explore the relationship between the effects of curcumin and the molecular mechanisms underlying the ferroptosis signaling pathway, drawing from current in vivo and in vitro research. Curcumin has been found to induce ferroptosis in cancer cells while acting as an inhibitor of ferroptosis in tissue injuries. Notably, curcumin treatment leads to alterations in key ferroptosis markers, underscoring its significant impact on this process. Nonetheless, further research focused on elucidating this important attribute of turmeric is crucial for advancing disease treatment </p
Identification of key upregulated genes involved in foam cell formation and the modulatory role of statin therapy
Background: We aimed to investigate the possible effect of statins on important genes/proteins involved in foam cell formation.
Methods: The gene expression profile of the GSE9874, GSE54666, and GSE7138 from the Omnibus database were usedto identify genes involved in foam cell formation. The protein-protein interaction (PPI) network and MCODE analysis of the intersection of three databases were analyzed. We used molecular docking analysis to investigate the possible interaction of different statins with the overexpressed hub genes obtained from PPI analysis.
Results: The intersection among the three datasets showed 54 upregulated and 26 down-regulated genes. The most critical overexpressed genes/proteins obtained as hub genes included: G6PD, NPC1, ABCA1, ABCG1, PGD, PLIN2, PPAP2B, and TXNRD1 based on PPI analysis. Functional enrichment analysis of 81 intersection DEGs at the biological process level focusing on the cholesterol metabolic process, secondary alcohol biosynthetic process and the cholesterol biosynthetic process. Under cellular components, the analysis confirmed that these 81 intersection DEGs were mainly applied in endoplasmic reticulum membrane, lysosome and lytic vacuole. The molecular functions were identified as sterol binding, oxidoreductase activity and NADP binding. The molecular docking showed that all statins appear to affect important protein targets overexpressed in foam cell formation. However, lipophilic statins, especially pitavastatin and lovastatin, had a greater effect than hydrophilic statins. The most significant protein target of all the overexpressed genes interacting with all statin types was ABCA1.
Conclusion: The effect of lipophilic statins was shown for several critical proteins in foam cell formation.</p
- …
