26 research outputs found

    Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible

    No full text
    Colorectal cancer (CRC) is a common cause of cancer and cancer-related death. Surgery is the only curative modality. Fluorescence-enhanced visualization of CRC with targeted fluorescent probes that can delineate boundaries and target tumor-specific biomarkers can increase rates of curative resection. Approaches to enhancing visualization of the tumor-to-normal tissue interface are active areas of investigation. Nonspecific dyes are the most-used approach, but tumor-specific targeting agents are progressing in clinical trials. The present narrative review describes the principles of fluorescence targeting of CRC for diagnosis and fluorescence-guided surgery with molecular biomarkers for preclinical or clinical evaluation

    Near-infrared photoimmunotherapy is effective treatment for colorectal cancer in orthotopic nude-mouse models.

    No full text
    BackgroundPhotoimmunotherapy (PIT) employs the use of a near-infrared (NIR) laser to activate an antibody conjugated to a NIR-activatable dye to induce cancer cell death. PIT has shown to be effective in a number of studies, however, there are no data on its use in colorectal cancer in an orthotopic model.MethodsHumanized anti-CEA antibody (M5A) was conjugated to NIR-activatable IRDye700DX (M5A-700). PIT was validated in vitro with a colon cancer cell-line, using a laser intensity of either 4 J/cm2, 8 J/cm2, or 16 J/cm2. Orthotopic colon cancer mouse models were established by surgical implantation of LS174T tumor fragments onto the cecum. M5A-700 was administered and PIT was performed 24 hours later using a 690 nm laser. Repeat PIT was performed after 7 days in one group. Control mice received laser treatment only.ResultsIn vitro PIT demonstrated tumor cell death in a laser intensity dose-dependent fashion. In orthotopic models, control mice demonstrated persistent tumor growth. Mice that underwent PIT one time had tumor growth arrested for one week, after which re-growth occurred. The group that received repeated PIT exposure had persistent inhibition of tumor growth.ConclusionPIT arrests tumor growth in colon cancer orthotopic nude-mouse models. Repeated PIT arrests colon cancer growth for a longer period of time. PIT may be a useful therapy in the future as an adjunct to surgical resection or as primary therapy to suppress tumor progression

    Humanized Anti–Tumor-Associated Glycoprotein–72 for Submillimeter Near-Infrared Detection of Colon Cancer in Metastatic Mouse Models

    No full text
    BackgroundTumor-associated glycoprotein (TAG)-72 is a pancarcinoma antigen that is overexpressed in greater than 80% of colorectal adenocarcinomas. CC49 is a TAG-72-specific antibody. The aim of the present study was to demonstrate selective imaging of colon tumors and metastases with the humanized TAG-72 antibody (anti-huCC49) conjugated to a near-infrared fluorophore in orthotopic mouse models.MethodsAnti-huCC49 was conjugated to near-infrared dye IR800CW. Mouse imaging was performed with the Pearl Trilogy Small Animal and FLARE Imaging Systems. Subcutaneous mouse models of colon cancer cell line LS174T were used to determine the optimal dose of administration and timing of imaging. Orthotopic mouse models of LS174T were established by surgical orthotopic implantation of LS174T tumors onto the serosa of the cecum. Peritoneal carcinomatosis models were established by injection of LS174T cells into the peritoneum of nude mice. Mice were administered anti-huCC49-IR800 via tail vein injection. Mice were euthanized 72 h later and imaged after laparotomy.ResultsSubcutaneous LS174T xenografts demonstrated optimal tumor detection 72 h after administration with 50 Î¼g anti-huCC49-IR800CW. Tumors were visualized with fluorescence imaging with a mean tumor-to-liver ratio of 7.39 (standard deviation: 2.76). In the orthotopic model, metastases smaller than 1 mm were fluorescently visualized that were invisible with bright light.ConclusionsAnti-huCC49-IR800CW provides sensitive and specific imaging of colon cancer and metastases at a submillimeter resolution in metastatic nude mice models. This provides a promising near-infrared probe for the imaging of colon cancer and metastases for preoperative diagnosis and fluorescence-guided surgery

    Fluorescent Anti-CEA Nanobody for Rapid Tumor-Targeting and Imaging in Mouse Models of Pancreatic Cancer

    No full text
    Tumor-specific targeting with fluorescent probes can enhance contrast for identification of cancer during surgical resection and visualize otherwise invisible tumor margins. Nanobodies are the smallest naturally-occurring antigen-binding molecules with rapid pharmacokinetics. The present work demonstrates the efficacy of a fluorescent anti-CEA nanobody conjugated to an IR800 dye to target and label patient derived pancreatic cancer xenografts. After intravenous administration, the probe rapidly localized to the pancreatic cancer tumors within an hour and had a tumor-to-background ratio of 2.0 by 3 h. The fluorescence signal was durable over a prolonged period of time. With the rapid kinetics afforded by fluorescent nanobodies, both targeting and imaging can be performed on the same day as surgery

    The Use of Fluorescent Anti-CEA Antibodies to Label, Resect and Treat Cancers: A Review

    No full text
    A major barrier to the diagnosis and effective treatment of solid-tumor cancers is the difficulty in detection and visualization of tumor margins in primary and metastatic disease. The use of fluorescence can augment the surgeon's ability to detect cancer and aid in its resection. Several cancer types express carcinoembryonic antigen (CEA) including colorectal, pancreatic and gastric cancer. Antibodies to CEA have been developed and tagged with near-infrared fluorescent dyes. This review article surveyed the use of CEA antibodies conjugated to fluorescent probes for in vivo studies since 1990. PubMed and Google Scholar databases were queried, and 900 titles and abstracts were screened. Fifty-nine entries were identified as possibly meeting inclusion/exclusion criteria and were reviewed in full. Forty articles were included in the review and their citations were screened for additional entries. A total of 44 articles were included in the final review. The use of fluorescent anti-CEA antibodies has been shown to improve detection and resection of tumors in both murine models and clinically. The cumulative results indicate that fluorescent-conjugated anti-CEA antibodies have important potential to improve cancer diagnosis and surgery. In an emerging technology, anti-CEA fluorescent antibodies have also been successfully used for photoimmunotherapy treatment for cancer
    corecore