114 research outputs found

    Transmembrane disposition of the phlorizin binding protein of intestinal brush borders

    Get PDF
    Feu Estrada, Modest (arquitecte)Primer pla d'un edifici d'habitatges de planta baixa més cinc plantes pis amb coberta terrat. La planta baixa és un dels pocs exemples on no s'han produït intervencions i es conserva tal com ha estat des del seu origen

    GLUT4 translocation by insulin in intact muscle cells: detection by a fast and quantitative assay

    Get PDF
    AbstractWe report a rapid and sensitive colorimetric approach to quantitate the amount of glucose transporters exposed at the surface of intact cells, using L6 muscle cells expressing GLUT4 containing an exofacial myc epitope. Unstimulated cells exposed to the surface 5 fmol GLUT4myc per mg protein. This value increased to 10 fmol/mg protein in response to insulin as 2-deoxyglucose (10 μM) uptake doubled. The results are substantiated by immunofluorescent detection of GLUT4myc in unpermeabilized cells and by subcellular fractionation. We further show that wortmannin and the cytoskeleton disruptors cytochalasin D and latrunculin B completely blocked these insulin effects. The rapid quantitative assay described here could be of high value to study insulin signals and to screen for potential anti-diabetic drugs

    Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle

    Get PDF
    AbstractInsulin and acute exercise (45 min of treadmill run) increased glucose uptake into perfused rat hindlimbs 5-fold and 3.2-fold, respectively. Following exercise, insulin treatment resulted in a further increase in glucose uptake. The subcellular distribution of the muscle glucose transporters GLUT-1 and GLUT-4 was determined in plasma membranes and intracellular membranes. Neither exercise nor exercise→ insulin treatment altered the distribution of GLUT-1 transporters in these medmbrane fractions. In contrast, exercise, insulin and exercise→ insulin treatment caused comparable increases in GLUT-4 transporters in the plasma membrane. The results suggest that exercise might limit insulin-induced GLUT-4 recruitment and that following exercise, insulin may alter the intrinsic activity of plasma membrane glucose transporters

    Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells

    Get PDF
    Skeletal muscle accounts for ~80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined. Toward this, we have employed the PAK1 inhibitor, IPA3, in studies using L6-GLUT4-myc muscle cells. IPA3 fully ablated insulin-stimulated GLUT4 translocation to the PM, corroborating the observation of ablated insulin-stimulated GLUT4 accumulation in the PM of skeletal muscle from PAK1−/− knockout mice. IPA3-treatment also abolished insulin-stimulated glucose uptake into skeletal myotubes. Mechanistically, live-cell imaging of myoblasts expressing the F-actin biosensor LifeAct-GFP treated with IPA3 showed blunting of the normal insulin-induced cortical actin remodeling. This blunting was underpinned by a loss of normal insulin-stimulated cofilin dephosphorylation in IPA3-treated myoblasts. These findings expand upon the existing model of actin remodeling in glucose uptake, by placing insulin-stimulated PAK1 signaling as a required upstream step to facilitate actin remodeling and subsequent cofilin dephosphorylation. Active, dephosphorylated cofilin then provides the G-actin substrate for continued F-actin remodeling to facilitate GLUT4 vesicle translocation for glucose uptake into the skeletal muscle cell

    Dynamic glucose uptake, storage, and release by human microvascular endothelial cells

    Get PDF
    Endothelia determine blood-to-tissue solute delivery, yet glucose transit is poorly understood. To illuminate mechanisms, we tracked [3H]-2-deoxyglucose (2-DG) in human adipose-tissue microvascular endothelial cells. 2-DG uptake was largely facilitated by the glucose transporters GLUT1 and GLUT3. Once in the cytosol, >80% of 2-DG became phosphorylated and ∼20% incorporated into glycogen, suggesting that transported glucose is readily accessible to cytosolic enzymes. Interestingly, a fraction of intracellular 2-DG was released over time (15–20% over 30 min) with slower kinetics than for uptake, involving GLUT3. In contrast to intracellular 2-DG, the released 2-DG was largely unphosphorylated. Glucose release involved endoplasmic reticulum–resident translocases/phosphatases and was stimulated by adrenaline, consistent with participation of glycogenolysis and glucose dephosphorylation. Surprisingly, the fluorescent glucose derivative 2-NBD-glucose (2-NBDG) entered cells largely via fluid phase endocytosis and exited by recycling. 2-NBDG uptake was insensitive to GLUT1/GLUT3 inhibition, suggesting poor influx across membranes. 2-NBDG recycling, but not 2-DG efflux, was sensitive to N-ethyl maleimide. In sum, by utilizing radioactive and fluorescent glucose derivatives, we identified two parallel routes of entry: uptake into the cytosol through dedicated glucose transporters and endocytosis. This reveals the complex glucose handling by endothelial cells that may contribute to glucose delivery to tissues.Fil: Yazdani, Samaneh. University Of Toronto. Hospital For Sick Children; CanadáFil: Bilan, Philip J.. University Of Toronto. Hospital For Sick Children; CanadáFil: Jaldín Fincati, Javier Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina. University Of Toronto. Hospital For Sick Children; CanadáFil: Pang, Janice. University Of Toronto. Hospital For Sick Children; CanadáFil: Ceban, Felicia. University Of Toronto. Hospital For Sick Children; CanadáFil: Saran, Ekambir. University Of Toronto. Hospital For Sick Children; CanadáFil: Brumell, John H.. University Of Toronto. Hospital For Sick Children; Canadá. University of Toronto; CanadáFil: Freeman, Spencer A.. University Of Toronto. Hospital For Sick Children; Canadá. University of Toronto; CanadáFil: Klip, Amira. University of Toronto; Canadá. University Of Toronto. Hospital For Sick Children; Canad

    Pannexin 3 deletion reduces fat accumulation and inflammation in a sex-specific manner

    Get PDF
    Background: Pannexin 3 (PANX3) is a channel-forming glycoprotein that enables nutrient-induced inflammation in vitro, and genetic linkage data suggest that it regulates body mass index. Here, we characterized inflammatory and metabolic parameters in global Panx3 knockout (KO) mice in the context of forced treadmill running (FEX) and high-fat diet (HFD). Methods: C57BL/6N (WT) and KO mice were randomized to either a FEX running protocol or no running (SED) from 24 until 30 weeks of age. Body weight was measured biweekly, and body composition was measured at 24 and 30 weeks of age. Male WT and KO mice were fed a HFD from 12 to 28 weeks of age. Metabolic organs were analyzed for a panel of inflammatory markers and PANX3 expression. Results: In females there were no significant differences in body composition between genotypes, which could be due to the lack of PANX3 expression in female white adipose tissue, while male KOs fed a chow diet had lower body weight and lower fat mass at 24 and 30 weeks of age, which was reduced to the same extent as 6 weeks of FEX in WT mice. In addition, male KO mice exhibited significantly lower expression of multiple pro-inflammatory genes in white adipose tissue compared to WT mice. While on a HFD body weight differences were insignificant, multiple inflammatory genes were significantly different in quadriceps muscle and white adipose tissue resulting in a more anti-inflammatory phenotype in KO mice compared to WT. The lower fat mass in male KO mice may be due to significantly fewer adipocytes in their subcutaneous fat compared to WT mice. Mechanistically, adipose stromal cells (ASCs) cultured from KO mice grow significantly slower than WT ASCs. Conclusion: PANX3 is expressed in male adult mouse adipose tissue and may regulate adipocyte numbers, influencing fat accumulation and inflammation
    corecore