49 research outputs found
Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system
The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems
Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity
The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity
Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling
In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from whic
Analysis of the transient compressible vapor flow in heat pipe
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures
Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices
Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation
RGB2LIDAR: Towards Solving Large-Scale Cross-Modal Visual Localization
We study an important, yet largely unexplored problem of large-scale
cross-modal visual localization by matching ground RGB images to a
geo-referenced aerial LIDAR 3D point cloud (rendered as depth images). Prior
works were demonstrated on small datasets and did not lend themselves to
scaling up for large-scale applications. To enable large-scale evaluation, we
introduce a new dataset containing over 550K pairs (covering 143 km^2 area) of
RGB and aerial LIDAR depth images. We propose a novel joint embedding based
method that effectively combines the appearance and semantic cues from both
modalities to handle drastic cross-modal variations. Experiments on the
proposed dataset show that our model achieves a strong result of a median rank
of 5 in matching across a large test set of 50K location pairs collected from a
14km^2 area. This represents a significant advancement over prior works in
performance and scale. We conclude with qualitative results to highlight the
challenging nature of this task and the benefits of the proposed model. Our
work provides a foundation for further research in cross-modal visual
localization.Comment: ACM Multimedia 202