4 research outputs found

    Chronic pain in hemodialysis patients: Role of bone mineral metabolism

    Get PDF
    Background: Pain is one of the most common complaints in clinical practice because it is a symptom for a myriad of physical and mental problems. The high prevalence of pain in the chronic kidney disease (CKD) population is particularly concerning because pain has been shown to adversely affect quality of life. The aim of this study was to evaluate the prevalence and possible causes of chronic pain in patients with end stage renal disease on long-term hemodialysis (HD).Methods: We prospectively enrolled 100 patients who were undergoing maintenance HD for at least 6 months or more. Pain was evaluated using the Brief Pain Inventory (BPI). Data collected on each participant included age, gender, body mass index (BMI), time on dialysis and biochemical findings.Results: The average age was 42.06 years ranged from 22 to 58 years; the average duration on dialysis was 4.97 years. 52 patients were males and 48 were females. Although 52% of patients experienced chronic pain, only 25% described the pain as severe, 28% described pain as moderate while 52% of patients described as mild. Musculoskeletal pain was the most frequent form of chronic pain reported by patients who were on HD (54%). Malnutrition and high CRP were highly statistically associated with chronic pain (p< 0.001). High statistical significant correlation was found between lower calcium, lower 25(OH) D3 levels, higher parathyroid hormone (PTH) levels and experienced chronic pain (p< 0.001).Conclusion: Chronic pain is highly experienced in long-term hemodialysis patients. Malnutrition, high CRP and disturbed bone mineral metabolism are highly correlated with the incident of this pain

    Association of adiponectin with cardiovascular events in diabetic and non-diabetic hemodialysis patients

    No full text
    Adiponectin is a novel collagen-like protein synthesized by white adipose tissue. Its levels are decreased in obesity, type-2 diabetes and insulin-resistant states, and are increased in chronic renal failure. It has anti-inflammatory and anti-atherogenic properties. This study was planned to evaluate the levels of adiponectin in uremic patients with and without diabetes and to find any relationship between adiponectin levels and some cardiovascular risk factors, and to determine the possible predictive value of adiponectin for cardiovascular complications (CVC). The study included 100 subjects, 20 of them were healthy subjects and served as the control group (group I), 40 were uremic non-diabetic patients (group II) (half of them were without CVC, group IIA, and the other half were patients with CVC, group IIB) and, lastly, 40 uremic diabetic patients (group III) (half of them were without CVC, group IIIA, and the other half were patients with CVC, group IIIB). All subjects were subjected to complete clinical examination, including determination of mean arterial blood pressure (MABP), body mass index (BMI), waist to hip ratio, routine laboratory investigations, fasting plasma glucose, fasting plasma insulin, lipid profile (cholesterol, TG, LDL, HDL), determination of insulin resistance by homeostasis model assessment index (HOMA-IR) and estimation of serum levels of adiponectin. There was a significant increase in serum adiponectin levels in all the uremic patients (group II and group III) when compared with the control (group I) group, P <0.01; also, serum adiponectin levels were significantly decreased in uremic diabetic patients (group III) when compared with uremic non-diabetic patients (group II), P <0.01; but this was still higher than in the controls. The patients with CVC, whether uremic non-diabetic (group IIB) or uremic diabetic (group IIIB), had a significant decrease in serum adiponectin levels when compared with patients without CVC (group IIA and group IIIA), P <0.01. Serum adiponectin has a significant positive correlation with HDL and a significant negative correlation with MABP, BMI, plasma insulin, HOMA-IR, LDL, TG and choles-terol in all the patients. Therefore, it can be concluded that adiponectin levels in uremic patients, whether diabetic or non-diabetic, may be a good indicator of cardiovascular disease risk

    Prevalence of acute kidney injury in cardiac patients in the Intensive Care Unit

    No full text
    Background Acute kidney injury (AKI) has consistently been associated with adverse clinical outcome after acute myocardial infarction (MI). In addition, AKI is well-known as a potent predictor of the clinical course in heart failure patients. The aim of this study was to assess the prevalence and risk factors of AKI in patients with acute MI and congestive heart failure (CHF) in the ICU at Zagazig University Hospitals, Egypt. Patients and methods This study included 100 patients with acute MI and 100 patients with CHF admitted to the ICU. They were subjected to careful history taking, thorough clinical examination, ECG and echocardiographic evaluation, and laboratory investigations, including cardiac enzyme evaluation, renal profile, and fasting blood glucose. Definitions of AKI depend on the measurement of serum creatinine as a surrogate marker for the glomerular filtration rate, in addition to the calculation of estimated glomerular filtration rate. Results The proportion of patients who experienced AKI was 47% in patients with CHF and 45% in patients with acute MI. They were significantly older in age (P=0.013 and 0.004, respectively). In CHF, patients with AKI had significantly higher fasting blood sugar (P=0.011), abnormal ECG changes (P=0.001), lower ejection fraction (P=0.034), and lower diastolic dysfunction (P=0.027). However, in acute MI, patients with AKI had significantly higher fasting blood sugar (P=0.013) and higher troponin I level (P=0.015). Conclusion The most important risk factors for AKI in patients with CHF are older age, higher frequency of diabetes mellitus, abnormal ECG changes, lower ejection fraction, and diastolic dysfunction. However, high troponin I and older age are the most important risk factors for AKI in patients with acute MI. Careful monitoring of susceptible patients in the ICU is recommended for early detection and management of AKI in those patients

    The link between the fibroblast growth factor-23-klotho-vitamin D3 axis and the renin-angiotensin-aldosterone axis in the development and progression of obesity-related kidney disease

    No full text
    Introduction and aim of the workObesity is established as an important contributor of increased diabetes mellitus, hypertension and cardiovascular disease, all of which can promote chronic kidney disease (CKD). Recently, there is a growing appreciation that even in the absence of these risks, obesity itself significantly increases CKD and accelerates its progression. The aim of this work is to evaluate the link between Renin-Angiotensin-Aldosterone System (RAAS) and FGF23-Klotho-1,25D3 axis and their impact in obese and non-obese CKD patients. Patients and methods In a cross sectional randomized multi centers study, two hundred twenty six CKD patients stage III and IV (eGFR20-60 ml/min/m2) have enrolled in this study as follows: group I; 87 non diabetic CKD patients aged 20-40 years with body mass index (BMI) between 20-25 kgm/m2; group II; 130 non diabetic CKD patients aged 20-40 years with (BMI) >30 kgm/m2 and group III; 89 CKD patients aged >60 years. All patient have been tested for plasma leptinlevels, 1,25-dihydrocholicalciferole (1,25D3), plasmaparathormone (PTH) Serum calcium (Ca), serum phosphorus (PO4), and plasma FGF-23 , plasma renin activity (PRA), plasma angiotensinogen receptor 1 &2 (AT1 & AT2) and plasma aldosterone (ALD) and pulse wave velocity (PWV). Results The eGFR was significantly reduced in the obese group II (eGFR=37.7±13.6) when compared with eGFR of the lean group I (eGFR=49.3±7.51) were P<0.001, but not significant when compared with the old age group III (eGFR=41.0±13.47). The obese group II shows significant increase in the ALD/PRA ratio when compared with the lean group I and old age group III (43.23±14.9) for group II vs 11.29±4.1 for group I, P<0.001 and 24.91±12.1 for group III, P<0.05 ). Regarding the FGF23-Klotho-vitD3 axis, its components of the obese group II (FGF23 259.55±138.6 Ru/ml; PTH 77.63±X32.4 pg/ml; S.PO 4.74±1.61 mg/dl) were significantly elevated when compared to the lean group I (FGF23 132.81±126.1 Ru/ml; PTH 59.18±24.7 pg/ml; S.PO4 3.85±0.92 mg/dl); the P values were <0.001, <0.01 and <0.05 respectively , while when compared with the old age group III (FGF23 179.33±237.4 Ru/ml; PTH 70.94±15.26 pg/ml; S.PO4 4.09±0.42 mg/dl), values were of less significance. Plasma insulin levels were significantly high in the obese group II (insulin=13.73±2.38fg/l) than the lean group I (insulin=5.59±2.31 fg/l) and P<0.001 and in group III p. insulin level was 10.7±1.68 (P<0.05). Conclusion Obesity per se is an independent risk factor in the development and progression of chronic kidney disease specially in young age patients
    corecore