143 research outputs found
Bacterial Community Reconstruction Using A Single Sequencing Reaction
Bacteria are the unseen majority on our planet, with millions of species and
comprising most of the living protoplasm. While current methods enable in-depth
study of a small number of communities, a simple tool for breadth studies of
bacterial population composition in a large number of samples is lacking. We
propose a novel approach for reconstruction of the composition of an unknown
mixture of bacteria using a single Sanger-sequencing reaction of the mixture.
This method is based on compressive sensing theory, which deals with
reconstruction of a sparse signal using a small number of measurements.
Utilizing the fact that in many cases each bacterial community is comprised of
a small subset of the known bacterial species, we show the feasibility of this
approach for determining the composition of a bacterial mixture. Using
simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA
gene sequence may provide enough information for reconstruction of mixtures
containing tens of species, out of tens of thousands, even in the presence of
realistic measurement noise. Finally, we show initial promising results when
applying our method for the reconstruction of a toy experimental mixture with
five species. Our approach may have a potential for a practical and efficient
way for identifying bacterial species compositions in biological samples.Comment: 28 pages, 12 figure
BITs and Pieces of Property
Property sets out the ways in which society allocates, governs, and enforces rights and duties among persons with respect to resources. The boundaries of property are constantly changing. They influence and are influenced by social, economic, and political shifts. Nowadays, in view of ever intensifying foreign investments and other cross-border ventures, the institution of property may face its greatest challenge ever: the transition from a largely domestic legal construct into one that accommodates globalization
Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies.
Immediate freezing at -20°C or below has been considered the gold standard for microbiome preservation, yet this approach is not feasible for many field studies, ranging from anthropology to wildlife conservation. Here we tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including such types of variation as freeze-thaw cycles and the high temperature fluctuations often encountered under field conditions. We found that three of the methods-95% ethanol, FTA cards, and the OMNIgene Gut kit-can preserve samples sufficiently well at ambient temperatures such that differences at 8 weeks are comparable to differences among technical replicates. However, even the worst methods, including those with no fixative, were able to reveal microbiome differences between species at 8 weeks and between individuals after a week, allowing meta-analyses of samples collected using various methods when the effect of interest is expected to be larger than interindividual variation (although use of a single method within a study is strongly recommended to reduce batch effects). Encouragingly for FTA cards, the differences caused by this method are systematic and can be detrended. As in other studies, we strongly caution against the use of 70% ethanol. The results, spanning 15 individuals and over 1,200 samples, provide our most comprehensive view to date of storage effects on stool and provide a paradigm for the future studies of other sample types that will be required to provide a global view of microbial diversity and its interaction among humans, animals, and the environment. IMPORTANCE Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive
Noise in timing and precision of gene activities in a genetic cascade
Biological developmental pathways require proper timing of gene expression. We investigated timing variations of defined steps along the lytic cascade of bacteriophage λ. Gene expression was followed in individual lysogenic cells, after induction with a pulse of UV irradiation. At low UV doses, some cells undergo partial induction and eventually divide, whereas others follow the lytic pathway. The timing of events in cells committed to lysis is independent of the level of activation of the SOS response, suggesting that the lambda network proceeds autonomously after induction. An increased loss of temporal coherence of specific events from prophage induction to lysis is observed, even though the coefficient of variation of timing fluctuations decreases. The observed temporal variations are not due to cell factors uniformly dilating the timing of execution of the cascade. This behavior is reproduced by a simple model composed of independent stages, which for a given mean duration predicts higher temporal precision, when a cascade consists of a large number of steps. Evidence for the independence of regulatory modules in the network is presented
- …