695 research outputs found

    Unitary representations of the Galilean line group: Quantum mechanical principle of equivalence

    Full text link
    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertial reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics

    A quantum mechanical description of the experiment on the observation of gravitationally bound states

    Full text link
    Quantum states in the Earth's gravitational field were observed, when ultra-cold neutrons fall under gravity. The experimental results can be described by the quantum mechanical scattering model as it is presented here. We also discuss other geometries of the experimental setup which correspond to the absence or the reversion of gravity. Since our quantum mechanical model describes, particularly, the experimentally realized situation of reversed gravity quantitatively, we can practically rule out alternative explanations of the quantum states in terms of pure confinement effects.Comment: LaTeX, 10 pages, 4 figures, v2: references adde

    An adaptive inelastic magnetic mirror for Bose-Einstein condensates

    Get PDF
    We report the reflection and focussing of a Bose-Einstein condensate by a new pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely high optical quality. The deviations from specularity are less than 0.5 mrad rms, making this the best atomic mirror demonstrated to date. We have also used the mirror to realize the analog of a beam-expander, producing an ultra-cold collimated fountain of matter wavesComment: 4 pages, 4 figure

    Coherent Evolution of Bouncing Bose-Einstein Condensates

    Get PDF
    We investigate the evolution of Bose-Einstein condensates falling under gravity and bouncing off a mirror formed by a far-detuned sheet of light. After reflection, the atomic density profile develops splitting and interference structures which depend on the drop height, on the strength of the light sheet, as well as on the initial mean field energy and size of the condensate. We compare experimental results with simulations of the Gross-Pitaevski equation. A comparison with the behaviour of bouncing thermal clouds allows to identify quantum features specific for condensates.Comment: 4 page

    The Fermi accelerator in atom optics

    Full text link
    We study the classical and quantum dynamics of a Fermi accelerator realized by an atom bouncing off a modulated atomic mirror. We find that in a window of the modulation amplitude dynamical localization occurs in both position and momentum. A recent experiment [A. Steane, P. Szriftgiser, P. Desbiolles, and J. Dalibard, Phys. Rev. Lett. {\bf 74}, 4972 (1995)] shows that this system can be implemented experimentally.Comment: 5 pages, 5 figure

    Quantum damping of position due to energy measurements

    Get PDF
    Quantum theory for measurements of energy is introduced and its consequences for the average position of monitored dynamical systems are analyzed. It turns out that energy measurements lead to a localization of the expectation values of other observables. This is manifested, in the case of position, as a damping of the motion without classical analogue. Quantum damping of position for an atom bouncing on a reflecting surface in presence of a homogeneous gravitational field is dealt in detail and the connection with an experiment already performed in the classical regime is studied. We show that quantum damping is testable provided that the same measurement strength obtained in the experimental verification of the quantum Zeno effect in atomic spectroscopy [W. M. Itano et al., Phys. Rev. A {\bf 41}, 2295 (1990)] is made available.Comment: 19 pages + 4 figures available upon request; Plain REVTeX; To be published in Phys. Rev.

    Deconstructing Decoherence

    Get PDF
    The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplifying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb''. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment'' will survive. The phenomenology of decoherence may turn out to be significantly different.Comment: 13 two-column pages, 3 embedded figure

    Quantum Revivals in Periodically Driven Systems close to nonlinear resonance

    Full text link
    We calculate the quantum revival time for a wave-packet initially well localized in a one-dimensional potential in the presence of an external periodic modulating field. The dependence of the revival time on various parameters of the driven system is shown analytically. As an example of application of our approach, we compare the analytically obtained values of the revival time for various modulation strengths with the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good agreement.Comment: 14 pages, 1 figur

    Optics with an Atom Laser Beam

    Full text link
    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin-flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin-flip in the inhomogeneous magnetic field. A mirror reflectivity of more than 98% is measured
    • 

    corecore