2 research outputs found

    Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test.

    Get PDF
    Antidepressant-like effects of 5-hydroxytryptamine subtype 3 (5-HT3) antagonists including tropisetron and ondansetron have been previously demonstrated in the literature. It was reported that stimulation of 5-HT3 receptors activate the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, which is involved in regulation of behavioral and emotional functions. In our study, treating animals with tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01 and 0.1µg/kg) significantly decreased the immobility time in forced swimming test (FST) and tail-suspension test (TST). Co-administration of subeffective doses of tropisetron (1mg/kg) and ondansetron (0.001µg/kg) with subeffective dose of l-NAME (10mg/kg, nonselective NO synthase (NOS) inhibitor) and 7-nitroindazole (25mg/kg, neural NOS inhibitor) exerted antidepressant-like effect in FST and TST, while aminoguanidine (50mg/kg, inducible NOS inhibitor) did not enhance the antidepressant-like effect of 5-HT3 antagonists. Besides, l-arginine (750mg/kg, NO precursor) and sildenafil (5mg/kg, phosphodiesterase inhibitor) suppressed the anti-immobility effect of 5-HT3 antagonists. None of the treatments altered the locomotor behavior of mice in open-field test. Also, hippocampal (but not cortical) nitrite level was significantly lower in tropisetron and ondansetron-treated mice compared with saline-injected mice. Also, co-administration of 7-nitroindazole with tropisetron or ondansetron caused a significant decrease in hippocampal nitrite levels. In conclusion, we suggest that antidepressant-like effect of tropisetron and ondansetron are partially mediated by modulation of NO-cGMP pathway

    Neuroprotective properties of Betulin, Betulinic acid, and Ursolic acid as triterpenoids derivatives: a comprehensive review of mechanistic studies

    No full text
    Cognitive deficits are the main outcome of neurological disorders whose occurrence has risen over the past three decades. Although there are some pharmacologic approaches approved for managing neurological disorders, it remains largely ineffective. Hence, exploring novel nature-based nutraceuticals is a pressing need to alleviate the results of neurodegenerative diseases, such as Alzheimer’s disease (AD) and other neurodegenerative disorders. Some triterpenoids and their derivates can be considered potential therapeutics against neurological disorders due to their neuroprotective and cognitive-improving effects. Betulin (B), betulinic acid (BA), and ursolic acid (UA) are pentacyclic triterpenoid compounds with a variety of biological activities, including antioxidative, neuroprotective and anti-inflammatory properties. This review focuses on the therapeutic efficacy and probable molecular mechanisms of triterpenoids in damage prevention to neurons and restoring cognition in neurodegenerative diseases. Considering few studies on this concept, the precise mechanisms that mediate the effect of these compounds in neurodegenerative disorders have remained unknown. The findings can provide sufficient information about the advantages of these compounds against neurodegenerative disease
    corecore