25 research outputs found

    Radiation induced esophageal adenocarcinoma in a woman previously treated for breast cancer and renal cell carcinoma

    Get PDF
    BACKGROUND: Secondary radiation-induced cancers are rare but well-documented as long-term side effects of radiation in large populations of breast cancer survivors. Multiple neoplasms are rare. We report a case of esophageal adenocarcinoma in a patient treated previously for breast cancer and clear cell carcinoma of the kidney. CASE PRESENTATION: A 56 year-old non smoking woman, with no alcohol intake and no familial history of cancer; followed in the National Institute of Oncology of Rabat Morocco since 1999 for breast carcinoma, presented on consultation on January 2011 with dysphagia. Breast cancer was treated with modified radical mastectomy, 6 courses of chemotherapy based on CMF regimen and radiotherapy to breast, inner mammary chain and to pelvis as castration. Less than a year later, a renal right mass was discovered incidentally. Enlarged nephrectomy realized and showed renal cell carcinoma. A local and metastatic breast cancer recurrence occurred in 2007. Patient had 2 lines of chemotherapy and 2 lines of hormonotherapy with Letrozole and Tamoxifen assuring a stable disease. On January 2011, the patient presented dysphagia. Oesogastric endoscopy showed middle esophagus stenosing mass. Biopsy revealed adenocarcinoma. No evidence of metastasis was noticed on computed tomography and breast disease was controlled. Palliative brachytherapy to esophagus was delivered. Patient presented dysphagia due to progressive disease 4 months later. Jejunostomy was proposed but the patient refused any treatment. She died on July 2011. CONCLUSION: We present here a multiple neoplasm in a patient with no known family history of cancers. Esophageal carcinoma is most likely induced by radiation. However the presence of a third malignancy suggests the presence of genetic disorders

    Contribution à l'étude de la fonction physiologique de la glutaminyl cyclase de Carica papaya et à la caractérisation de l'enzyme

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Deep Learning for Epilepsy monitoring: A survey

    No full text
    Diagnosis of epilepsy can be expensive, time-consuming, and often inaccurate. The gold standard diagnostic monitoring is continuous video-electroencephalography (EEG), which ideally captures all epileptic events and dis-charges. Automated monitoring of seizures and epileptic activity from EEG would save time and resources, it is the focus of much EEG-based epilepsy research. The purpose of this paper is to provide a survey in order to understand, classify and benchmark the key parameters of deep learning-based approaches that were applied in the processing of EEG signals for epilepsy monitoring. This survey identifies the availability of data and the black-box nature of DL as the main challenges hindering the clinical acceptance of EEG analysis systems based on Deep Learning and suggests the use of Explainable Artificial Intelligence (XAI) and Transfer Learning to overcome these issues. It also underlines the need for more research to recognize the full potential of big data, Computing Edge, IoT to implement wearable devices that can assist epileptic patients and improve their quality of life

    Structure and composition of barley rhizospheric bacterial community and plant development cultivated with a super absorbent polymer

    No full text
    Our study aimed to determine the effect on barley (Hordeum vulgare L.) of adding potassium polyacrylate to a sandy soil under normal watering condition and drought. We focused on morphological and physiological characteristics of barley and its rhizosphere bacterial community structure using Illumina Miseq sequencing. It was found that under normal watering condition (70% of soil water holding capacity (WHC)), the soil water retention increased with the SAP addition to the soil. Barley plant height and weight, leaf relative water content and protein content decreased under drought (35% of soil WHC), the addition of SAP eliminated the negative effect of drought on plants, the proline content was reduced from 2.71 μg g−1 leave dry weight with stressed plants to 0.99 μg g−1 with only 0.2% of SAP. The barley rhizophere bacterial community was affected by drought. Changes in relative abundance were noticed at both phyla and OTU level. The SAP addition (0.8%) shifted the barley rhizophere bacterial community to become in part more similar to that of the normal watering condition. Also, we found that the SAP addition had a side effect itself on the barley rhizosphere bacterial community other than its capacity of water holding

    Carica papaya latex is a rich source of a class II chitinase.

    No full text
    A class II chitinase is present in the latex of the tropical species Carica papaya. The enzyme may be readily purified by using a combination of hydrophobic interaction- and cation-exchange chromatography. This enzyme preparation is homogeneous with respect to the three physico-chemical criteria of charge, M(r) (28,000) and hydrophobicity. It is also completely free of any proteolytic and bacteriolytic activities. The enzyme was classified as a class II chitinase on the basis of its N-terminal amino acid sequence up to the 30th residue. In agreement with this classification, the enzyme preparation hydrolyses chitinase substrates only very slowly and several free thiol functions are present in the polypeptide chain. These free thiol functions are buried, and to be available for titration with 2,2'-dipyridyldisulphide, the enzyme must be denatured. Unfolding of papaya chitinase requires particularly drastic conditions, not less than 4 M guanidinium hydrochloride at 25 degrees and pH 6.8.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Purification and characterization of papaya glutamine cyclotransferase, a plant enzyme highly resistant to chemical, acid and thermal denaturation.

    No full text
    Papaya glutamine cyclotransferase (PQC), present in the laticiferous cells of the tropical species Carica papaya, was purified near to homogeneity. Starting from the soluble fraction of the collected plant latex, a combination of ion-exchange chromatography on SP-Sepharose Fast Flow, hydrophobic interaction chromatography on Fractogel TSK Butyl-650 and affinity chromatography on immobilized trypsin provided a purification factor of 279 with an overall yield of 80%. In the course of the purification procedure, the two solvent accessible thiol functions located on the hydrophobic surface of the enzyme were converted into their S-methylthioderivatives. Papaya QC, a glycoprotein with a molecular mass of 33000 Da, contains a unique and highly basic polypeptide chain devoid of disulfide bridges as well as of covalently attached phosphate groups. Its absorption spectrum is dominated by the chromophores tyrosine which, nonetheless, do not contribute to the fluorescence emission of the plant enzyme. With a lambdamax of emission at 338 nm and a moderate susceptibility to be quenched by acrylamide, most of the tryptophyl residues of papaya QC appear to be sterically shielded by surrounding protein atoms. Fluorescence can thus be used to monitor unfolding of this enzyme. Preliminary experiments show that papaya QC is exceptionally resistant to chemical (guanidinium hydrochloride), acid and thermal denaturation. At first sight also, this enzyme exhibits high resistance to proteolysis by the papaya cysteine proteinases, yet present in great excess (around 100 mol of proteinases per mol of PQC) in the plant latex. Altogether, these results awaken much curiosity and interest to further investigate how the structure of this plant enzyme is specified.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Modelling surface electric discharge propagation on polluted insulators under AC voltage

    Get PDF
    In this contribution, a mathematical model allowing for the prediction of the AC surface arc propagation on polluted insulators under non-uniform electric field is proposed. The approach is based on the experimental concept of Claverie and Porcheron. The proposed model, which makes it possible to reproduce the surface electric discharge, includes a condition for arrest of the propagating discharge. The electric field at the tip of the discharge is the key parameter governing its random propagation. A finite element approach allows for mapping of the electric field distribution while the discharge propagation process is simulated in two dimensions. The voltage drop along the arc discharge path at each propagation step is also taken into account. The simulation results are validated against experimental data, taking into account several electro-geometric parameters (distance between electrodes, pollution conductivity, radius of high-voltage electrode, length of the plane electrode). Good agreement between computed and experimental results were obtained for various test configurations
    corecore