40 research outputs found

    Natural Evolution Strategies as a Black Box Estimator for Stochastic Variational Inference

    Full text link
    Stochastic variational inference and its derivatives in the form of variational autoencoders enjoy the ability to perform Bayesian inference on large datasets in an efficient manner. However, performing inference with a VAE requires a certain design choice (i.e. reparameterization trick) to allow unbiased and low variance gradient estimation, restricting the types of models that can be created. To overcome this challenge, an alternative estimator based on natural evolution strategies is proposed. This estimator does not make assumptions about the kind of distributions used, allowing for the creation of models that would otherwise not have been possible under the VAE framework

    Rising burden of Hepatitis C Virus in hemodialysis patients

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>High prevalence of Hepatitis C virus (HCV) has been reported among the dialysis patients throughout the world. No serious efforts were taken to investigate HCV in patients undergoing hemodialysis (HD) treatment who are at great increased risk to HCV. HCV genotypes are important in the study of epidemiology, pathogenesis and reaction to antiviral therapy. This study was performed to investigate the prevalence of active HCV infection, HCV genotypes and to assess risk factors associated with HCV genotype infection in HD patients of Khyber Pakhtunkhwa as well as comparing this prevalence data with past studies in Pakistan.</p> <p>Methods</p> <p>Polymerase chain reaction was performed for HCV RNA detection and genotyping in 384 HD patients. The data obtained was compared with available past studies from Pakistan.</p> <p>Results</p> <p>Anti HCV antibodies were observed in 112 (29.2%), of whom 90 (80.4%) were HCV RNA positive. In rest of the anti HCV negative patients, HCV RNA was detected in 16 (5.9%) patients. The dominant HCV genotypes in HCV infected HD patients were found to be 3a (n = 36), 3b (n = 20), 1a (n = 16), 2a (n = 10), 2b (n = 2), 1b (n = 4), 4a (n = 2), untypeable (n = 10) and mixed (n = 12) genotype.</p> <p>Conclusion</p> <p>This study suggesting that i) the prevalence of HCV does not differentiate between past and present infection and continued to be elevated ii) HD patients may be a risk for HCV due to the involvement of multiple routes of infections especially poor blood screening of transfused blood and low standard of dialysis procedures in Pakistan and iii) need to apply infection control practice.</p

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation &lt;92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p&lt;0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p&lt;0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    A Comprehensive Review of Types, Properties, Treatment Methods and Application of Plant Fibers in Construction and Building Materials

    No full text
    Sustainable development involves the usage of alternative sustainable materials in order to sustain the excessive depletion of natural resources. Plant fibers, as a “green” material, are progressively gaining the attention of various researchers in the field of construction for their potential use in composites for stepping towards sustainable development. This study aims to provide a scientometric review of the summarized background of plant fibers and their applications as construction and building materials. Studies from the past two decades are summarized. Quantitative assessment of research progress is made by using connections and maps between bibliometric data that are compiled for the analysis of plant fibers using Scopus. Data refinement techniques are also used. Plant fibers are potentially used to enhance the mechanical properties of a composite. It is revealed from the literature that plant-fiber-reinforced composites have comparable properties in comparison to composites reinforced with artificial/steel fibers for civil engineering applications, such as construction materials, bridge piers, canal linings, soil reinforcement, pavements, acoustic treatment, insulation materials, etc. However, the biodegradable nature of plant fibers is still a hindrance to their application as a structural material. For this purpose, different surface and chemical treatment methods have been proposed in past studies to improve their durability. It can be surmised from the gathered data that the compressive and flexural strengths of plant-fiber-reinforced cementitious composites are increased by up to 43% and 67%, respectively, with respect to a reference composite. In the literature, alkaline treatment has been reported as an effective and economical method for treating plant fibers. Environmental degradation due to excessive consumption of natural resources and fossil fuels for the construction industry, along with the burning of waste plant fibers, can be reduced by incorporating said fibers in cementitious composites to reduce landfill pollution and, ultimately, achieve sustainable development

    Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete

    No full text
    In this study, compressive strength (CS) of fiber-reinforced nano-silica concrete (FRNSC) was anticipated using ensemble machine learning (ML) approaches. Four types of ensemble ML methods were employed, including gradient boosting, random forest, bagging regressor, and AdaBoost regressor, to achieve the study&rsquo;s aims. The validity of employed models was tested and compared using the statistical tests, coefficient of determination (R2), and k-fold method. Moreover, a Shapley Additive Explanations (SHAP) analysis was used to observe the interaction and effect of input parameters on the CS of FRNSC. Six input features, including fiber volume, coarse aggregate to fine aggregate ratio, water to binder ratio, nano-silica, superplasticizer to binder ratio, and specimen age, were used for modeling. In predicting the CS of FRNSC, it was observed that gradient boosting was the model of lower accuracy and the AdaBoost regressor had the highest precision in forecasting the CS of FRNSC. However, the performance of random forest and the bagging regressor was also comparable to that of the AdaBoost regressor model. The R2 for the gradient boosting, random forest, bagging regressor, and AdaBoost regressor models were 0.82, 0.91, 0.91, and 0.92, respectively. Also, the error values of the models further validated the exactness of the ML methods. The average error values for the gradient boosting, random forest, bagging regressor, and AdaBoost regressor models were 5.92, 4.38, 4.24, and 3.73 MPa, respectively. SHAP study discovered that the coarse aggregate to fine aggregate ratio shows a greater negative correlation with FRNSC&rsquo;s CS. However, specimen age affects FRNSC CS positively. Nano-silica, fiber volume, and the ratio of superplasticizer to binder have both positive and deleterious effects on the CS of FRNSC. Employing these methods will promote the building sector by presenting fast and economical methods for calculating material properties and the impact of raw ingredients

    New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete

    No full text
    Recently, artificial intelligence (AI) approaches have gained the attention of researchers in the civil engineering field for estimating the mechanical characteristics of concrete to save the effort, time, and cost of researchers. Consequently, the current research focuses on assessing steel-fiber-reinforced concrete (SFRC) in terms of flexural strength (FS) prediction by employing delicate AI techniques as well as to predict the raw material interaction that is still a research gap. In this study, the FS of SFRC is estimated by deploying supervised machine learning (ML) techniques, such as DT-Gradient Boosting, DT-XG Boost, DT-AdaBoost, and DT-Bagging. In addition to that, the performance model is also evaluated by using R2, root mean square error (RMSE), and mean absolute error (MAE). Furthermore, the k-fold cross-validation method is also applied to validate the model&rsquo;s performance. It is observed that DT-Bagging with an R2 value of 0.95 is superior to DT-XG Boost, DT-Gradient Boosting, and DT-AdaBoost. Lesser error MAE and RMSE and higher R2 values for the DT-Bagging model show the enhanced performance of the model compared to the other ensembled approaches. Considerable conservation of time, effort, and cost can be made by applying ML techniques to predict concrete properties. The evaluation of the outcome depicts that the estimated results of DT-Bagging are closer to the experimental results, indicating the accurate estimation of SFRC flexural strength. It is further revealed from the SHapley Additive exPlanations (SHAP) study that the volumetric content of steel fiber highly and positively influences the FS of SFRC
    corecore