8,758 research outputs found
On the Forward-Backward Asymmetry of Leptonic Decays of at the Fermilab Tevatron
We report on a study of the measurement techniques used to determine the
leptonic forward-backward asymmetry of top anti-top quark pairs in Tevatron
experiments with a proton anti-proton initial state. Recently it was shown that
a fit of the differential asymmetry as a function of (where
is the charge of the lepton from the cascade decay of the top quarks
and is the final pseudorapidity of the lepton in the detector frame)
to a hyperbolic tangent function can be used to extrapolate to the full
leptonic asymmetry. We find this empirical method to well reproduce the results
from current experiments, and present arguments as to why this is the case. We
also introduce two more models, based on Gaussian functions, that better model
the distribution. With our better understanding, we find that
the asymmetry is mainly determined by the shift of the mean of the
distribution, the main contribution to the inclusive asymmetry
comes from the region around , and the extrapolation from
the detector-covered region to the inclusive asymmetry is stable via a
multiplicative scale factor, giving us confidence in the previously reported
experimental results.Comment: 26 pages, 12 figure
The Search for Supersymmetry at the Tevatron Collider
We review the status of searches for Supersymmetry at the Tevatron Collider.
After discussing the theoretical aspects relevant to the production and decay
of supersymmetric particles at the Tevatron, we present the current results for
Runs Ia and Ib as of the summer of 1997. To appear in the book "Perspectives in
Supersymmetry", edited by G.L. Kane, World Scientific.Comment: 84 pages with 31 figures imbedded using psfig.tex. Uses sprocl.st
Single Top Quark Production as a Probe for Anomalous Moments at Hadron Colliders
Single production of top quarks at hadron colliders via fusion is
examined as a probe of possible anomalous chromomagnetic and/or chromoelectric
moment type couplings between the top and gluons. We find that this channel is
far less sensitive to the existence of anomalous couplings of this kind than is
the usual production of top pairs by or fusion. This result is
found to hold at both the Tevatron as well as the LHC although somewhat greater
sensitivity for anomalous couplings in this channel is found at the higher
energy machine.Comment: New discussion and 10 new figures added. uuencoded postscript fil
Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment
We present measurements of radioactive contamination in the high-resistivity
silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search
for dark matter particles. Novel analysis methods, which exploit the unique
spatial resolution of CCDs, were developed to identify and
particles. Uranium and thorium contamination in the CCD bulk was measured
through spectroscopy, with an upper limit on the U
(Th) decay rate of 5 (15) kg d at 95% CL. We also
searched for pairs of spatially correlated electron tracks separated in time by
up to tens of days, as expected from Si-P or
Pb-Bi sequences of decays. The decay rate of Si
was found to be kg d (95% CI). An upper limit
of 35 kg d (95% CL) on the Pb decay rate was
obtained independently by spectroscopy and the decay sequence
search. These levels of radioactive contamination are sufficiently low for the
successful operation of CCDs in the forthcoming 100 g DAMIC detector.Comment: 18 pages, 20 figure
Recommended from our members
Measurement of W± boson production in Pb+Pb collisions at √sNN=5.02Te with the ATLAS detector
A measurement of W± boson production in Pb+Pb collisions at sNN=5.02Te is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of 0.49nb-1. The W± bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying W± bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for W+ and W- bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the W± boson production cross-sections measured in pp collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for W- (W+) bosons
Recommended from our members
Measurement of the Z(→ ℓ + ℓ −)γ production cross-section in pp collisions at √s = 13 TeV with the ATLAS detector
The production of a prompt photon in association with a Z boson is studied in proton-proton collisions at a centre-of-mass energy s = 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process pp → ℓ+ℓ−γ + X (ℓ = e, μ) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the ℓ+ℓ−γ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered. [Figure not available: see fulltext.]
Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)
- …
