44 research outputs found

    Statistical Analyses of Second Indoor Bio-Release Field Evaluation Study at Idaho National Laboratory

    Full text link
    In September 2008 a large-scale testing operation (referred to as the INL-2 test) was performed within a two-story building (PBF-632) at the Idaho National Laboratory (INL). The report “Operational Observations on the INL-2 Experiment” defines the seven objectives for this test and discusses the results and conclusions. This is further discussed in the introduction of this report. The INL-2 test consisted of five tests (events) in which a floor (level) of the building was contaminated with the harmless biological warfare agent simulant Bg and samples were taken in most, if not all, of the rooms on the contaminated floor. After the sampling, the building was decontaminated, and the next test performed. Judgmental samples and probabilistic samples were determined and taken during each test. Vacuum, wipe, and swab samples were taken within each room. The purpose of this report is to study an additional four topics that were not within the scope of the original report. These topics are: 1) assess the quantitative assumptions about the data being normally or log-normally distributed; 2) evaluate differences and quantify the sample to sample variability within a room and across the rooms; 3) perform geostatistical types of analyses to study spatial correlations; and 4) quantify the differences observed between surface types and sampling methods for each scenario and study the consistency across the scenarios. The following four paragraphs summarize the results of each of the four additional analyses. All samples after decontamination came back negative. Because of this, it was not appropriate to determine if these clearance samples were normally distributed. As Table 1 shows, the characterization data consists of values between and inclusive of 0 and 100 CFU/cm2 (100 was the value assigned when the number is too numerous to count). The 100 values are generally much bigger than the rest of the data, causing the data to be right skewed. There are also a significant number of zeros. Using QQ plots these data characteristics show a lack of normality from the data after contamination. Normality is improved when looking at log(CFU/cm2). Variance component analysis (VCA) and analysis of variance (ANOVA) were used to estimate the amount of variance due to each source and to determine which sources of variability were statistically significant. In general, the sampling methods interacted with the across event variability and with the across room variability. For this reason, it was decided to do analyses for each sampling method, individually. The between event variability and between room variability were significant for each method, except for the between event variability for the swabs. For both the wipes and vacuums, the within room standard deviation was much larger (26.9 for wipes and 7.086 for vacuums) than the between event standard deviation (6.552 for wipes and 1.348 for vacuums) and the between room standard deviation (6.783 for wipes and 1.040 for vacuums). Swabs between room standard deviation was 0.151, while both the within room and between event standard deviations are less than 0.10 (all measurements in CFU/cm2)

    Calculating Confidence, Uncertainty, and Numbers of Samples When Using Statistical Sampling Approaches to Characterize and Clear Contaminated Areas

    Get PDF
    This report discusses the methodology, formulas, and inputs needed to make characterization and clearance decisions for Bacillus anthracis-contaminated and uncontaminated (or decontaminated) areas using a statistical sampling approach. Specifically, the report includes the methods and formulas for calculating the • number of samples required to achieve a specified confidence in characterization and clearance decisions • confidence in making characterization and clearance decisions for a specified number of samples for two common statistically based environmental sampling approaches. In particular, the report addresses an issue raised by the Government Accountability Office by providing methods and formulas to calculate the confidence that a decision area is uncontaminated (or successfully decontaminated) if all samples collected according to a statistical sampling approach have negative results. Key to addressing this topic is the probability that an individual sample result is a false negative, which is commonly referred to as the false negative rate (FNR). The two statistical sampling approaches currently discussed in this report are 1) hotspot sampling to detect small isolated contaminated locations during the characterization phase, and 2) combined judgment and random (CJR) sampling during the clearance phase. Typically if contamination is widely distributed in a decision area, it will be detectable via judgment sampling during the characterization phrase. Hotspot sampling is appropriate for characterization situations where contamination is not widely distributed and may not be detected by judgment sampling. CJR sampling is appropriate during the clearance phase when it is desired to augment judgment samples with statistical (random) samples. The hotspot and CJR statistical sampling approaches are discussed in the report for four situations: 1. qualitative data (detect and non-detect) when the FNR = 0 or when using statistical sampling methods that account for FNR > 0 2. qualitative data when the FNR > 0 but statistical sampling methods are used that assume the FNR = 0 3. quantitative data (e.g., contaminant concentrations expressed as CFU/cm2) when the FNR = 0 or when using statistical sampling methods that account for FNR > 0 4. quantitative data when the FNR > 0 but statistical sampling methods are used that assume the FNR = 0. For Situation 2, the hotspot sampling approach provides for stating with Z% confidence that a hotspot of specified shape and size with detectable contamination will be found. Also for Situation 2, the CJR approach provides for stating with X% confidence that at least Y% of the decision area does not contain detectable contamination. Forms of these statements for the other three situations are discussed in Section 2.2. Statistical methods that account for FNR > 0 currently only exist for the hotspot sampling approach with qualitative data (or quantitative data converted to qualitative data). This report documents the current status of methods and formulas for the hotspot and CJR sampling approaches. Limitations of these methods are identified. Extensions of the methods that are applicable when FNR = 0 to account for FNR > 0, or to address other limitations, will be documented in future revisions of this report if future funding supports the development of such extensions. For quantitative data, this report also presents statistical methods and formulas for 1. quantifying the uncertainty in measured sample results 2. estimating the true surface concentration corresponding to a surface sample 3. quantifying the uncertainty of the estimate of the true surface concentration. All of the methods and formulas discussed in the report were applied to example situations to illustrate application of the methods and interpretation of the results

    Identification of atypical flight patterns

    Get PDF
    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis

    Energy Index For Aircraft Maneuvers

    Get PDF
    Method and system for analyzing, separately or in combination, kinetic energy and potential energy and/or their time derivatives, measured or estimated or computed, for an aircraft in approach phase or in takeoff phase, to determine if the aircraft is or will be put in an anomalous configuration in order to join a stable approach path or takeoff path. A 3 reference value of kinetic energy andor potential energy (or time derivatives thereof) is provided, and a comparison index .for the estimated energy and reference energy is computed and compared with a normal range of index values for a corresponding aircraft maneuver. If the computed energy index lies outside the normal index range, this phase of the aircraft is identified as anomalous, non-normal or potentially unstable

    Historical Analysis of Aircraft Flight Parameters

    Get PDF
    Method and system for analyzing and displaying one or more present flight parameter values (FP(t) of an aircraft in motion at a measurement time t(sub n), and for comparing the present flight parameter value with a selected percentage band, containing historical flight parameter data for similar conditions

    Information Display System for Atypical Flight Phase

    Get PDF
    Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase

    Comparison of Two Quantitative Methods of Discerning Airspace Enlargement in Smoke-Exposed Mice

    Get PDF
    In this work, we compare two methods for evaluating and quantifying pulmonary airspace enlargement in a mouse model of chronic cigarette smoke exposure. Standard stereological sample preparation, sectioning, and imaging of mouse lung tissues were performed for semi-automated acquisition of mean linear intercept (Lm) data. After completion of the Lm measurements, D2, a metric of airspace enlargement, was measured in a blinded manner on the same lung images using a fully automated technique developed in-house. An analysis of variance (ANOVA) shows that although Lm was able to separate the smoke-exposed and control groups with statistical significance (p = 0.034), D2 was better able to differentiate the groups (p<0.001) and did so without any overlap between the control and smoke-exposed individual animal data. In addition, the fully automated implementation of D2 represented a time savings of at least 24x over semi-automated Lm measurements. Although D2 does not provide 3D stereological metrics of airspace dimensions as Lm does, results show that it has higher sensitivity and specificity for detecting the subtle airspace enlargement one would expect to find in mild or early stage emphysema. Therefore, D2 may serve as a more accurate screening measure for detecting early lung disease than Lm
    corecore