7 research outputs found

    Division and Adaptation to Host Environment of Apicomplexan Parasites Depend on Apicoplast Lipid Metabolic Plasticity and Host Organelle Remodeling

    Get PDF
    Apicomplexan parasites are unicellular eukaryotic pathogens that must obtain and combine lipids from both host cell scavenging and de novo synthesis to maintain parasite propagation and survival within their human host. Major questions on the role and regulation of each lipid source upon fluctuating host nutritional conditions remain unanswered. Characterization of an apicoplast acyltransferase, TgATS2, shows that the apicoplast provides (lyso)phosphatidic acid, required for the recruitment of a critical dynamin (TgDrpC) during parasite cytokinesis. Disruption of TgATS2 also leads parasites to shift metabolic lipid acquisition from de novo synthesis toward host scavenging. We show that both lipid scavenging and de novo synthesis pathways in wild-type parasites exhibit major metabolic and cellular plasticity upon sensing host lipid-deprived environments through concomitant (1) upregulation of de novo fatty acid synthesis capacities in the apicoplast and (2) parasite-driven host remodeling to generate multi-membrane-bound structures from host organelles that are imported toward the parasite

    Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase

    Get PDF
    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii

    OX40L blockade protects against inflammation-driven fibrosis.

    No full text
    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40-OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation

    Complex Endosymbioses II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism

    No full text
    International audienceChloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but are metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways

    On the Runtime Enforcement of Timed Properties

    Get PDF
    International audienceRuntime enforcement refers to the theories, techniques, and tools for enforcing correct behavior of systems at runtime. We are interested in such behaviors described by specifications that feature timing constraints formalized in what is generally referred to as timed properties. This tutorial presents a gentle introduction to runtime enforcement (of timed properties). First, we present a taxonomy of the main principles and concepts involved in runtime enforcement. Then, we give a brief overview of a line of research on theoretical runtime enforcement where timed properties are described by timed automata and feature uncontrollable events. Then, we mention some tools capable of runtime enforcement, and we present the TiPEX tool dedicated to timed properties. Finally, we present some open challenges and avenues for future work. Runtime Enforcement (RE) is a discipline of computer science concerned with enforcing the expected behavior of a system at runtime. Runtime enforcement extends the traditional runtime verification [12-14, 42, 43] problem by dealing with the situations where the system deviates from its expected behavior. While runtime verification monitors are execution observers, runtime enforcers are execution modifiers. Foundations for runtime enforcement were pioneered by Schneider in [98] and by Rinard in [95] for the specific case of real-time systems. There are several tutorials and overviews on runtime enforcement for untimed systems [39, 47, 59], but none on the enforcement of timed properties (for real-time systems). In this tutorial, we focus on runtime enforcing behavior described by a timed property. Timed properties account for physical time. They allow expressing constraints on the time that should elapse between (sequences of) events, which is useful for real-time systems when specifying timing constraints between statements, their scheduling policies, the completion of tasks, etc [5, 7, 88, 101, 102]. This tutorial comprises four stages: 1. the presentation of a taxonomy of concepts and principles in RE (Sec. 1); 2. the presentation of a framework for the RE of timed properties where specifications are described by timed automata (preliminary concepts are recalled in Sec. 2, the framework is overviewed in Sec. 3, and presented in more details in Sec. 4); 3. the demonstration of the TiPEX [82] tool implementing the framework (Sec. 5); 4. the description of some avenues for future work (Sec. 6)
    corecore