14 research outputs found

    Thermal Flows

    Get PDF
    Flows of thermal origin and heat transfer problems are central in a variety of disciplines and industrial applications. The present book entitled Thermal Flows consists of a collection of studies by distinct investigators and research groups dealing with different types of flows relevant to both natural and technological contexts. Both reviews of the state-of-the-art and new theoretical, numerical and experimental investigations are presented, which illustrate the structure of these flows, their stability behavior, and the possible bifurcations to different patterns of symmetry and/or spatiotemporal regimes. Moreover, different categories of fluids are considered (liquid metals, gases, common fluids such as water and silicone oils, organic and inorganic transparent liquids, and nano-fluids). This information is presented under the hope that it will serve as a new important resource for physicists, engineers and advanced students interested in the physics of non-isothermal fluid systems; fluid mechanics; environmental phenomena; meteorology; geophysics; and thermal, mechanical and materials engineering

    Heat transfer analysis of a ventilated room with a porous partition: LB-MRT simulations

    No full text
    This article presents the hydrodynamic and thermal characteristics of transfers by forced, mixed and natural convection in a room ventilated by air displacement. The main objective is to study the effect of a porous partition on the heat transfer and therefore the thermal comfort in the room. The fluid flow future in the cavity and the heat transfer rate on the active wall have been analyzed for different permeabilities: 10−6 ≤ Da ≤ 10. The other control parameters are obviously, the Rayleigh number and the Reynolds number varied in the rows: 10 ≤ Ra ≤ 106 and 50 ≤ Re ≤ 500 respectively. The transfer equations write were solved by the Lattice Boltzmann Multiple Relaxation Time method. For flow in porous media an additional term is added in the standard LB equations, to consider the effect of the porous media, based on the generalized model, the Brinkman-Forchheimer-extended Darcy model. The most important conclusion is that the Darcian regime start for small Darcy number Da < 10−4. Spatial competition between natural convection cell and forced convection movement is observed as Ra and Re rise. The effect of Darcy number values and the height of the porous layer is barely visible with a maximum deviation less than 7% over the ranges considered. Note that the natural convection regime is never reached for low Reynolds numbers. For this Re values the cooperating natural convection only improves transfers by around 10% while, for the other Reynolds numbers the improvement in transfers due to natural and forced convections cooperation is more significant

    Analyse du chauffage périodique dans un cylindre poreux vertical

    No full text
    International audienceL'étude consiste en la modélisation numérique du transfert de chaleur par convection naturelle à travers un cylindre de stockage de grains disposé verticalement, ouvert à ses extrémités, et rempli d'un milieu poreux. La paroi du cylindre est portée à une température imposée variant d'une manière sinusoïdale dans le temps alors que le fluide est aspiré par le bas avec une température constante Le modèle d'écoulement de Darcy, sans établissement à la sortie de cylindre, a été employé pour modéliser notre problème. Dans le cas de température de paroi constante, deux types d'écoulements, avec et sans le recirculation, ont été obtenus selon les nombres de Rayleigh (Ra), le rapport de forme et la propriété thermophysique du milieu poreux (Bi).La comparaison entre température sinusoïdale et constante montre qu'il ya une similitude pour les faibles valeurs de Ra et X

    Effect of porous partition height on thermal performance of a ventilated cavity using LBMMRT

    No full text
    The objective of this work is to study the effect of the thickness of a porous separation on the thermal performance in a cavity with displacement ventilation. The cold air jet enters and exits through two openings located in the lower and upper parts of the left wall and the right wall respectively. The other horizontal walls are also adiabatic. The hydrodynamic and thermal characteristics of the transfer were studied for three configurations with the same aspect ratio L/H=2. The height Hp of the porous separation was varied between 0.2 and 0.8 where is placed in the center of the cavity. The transfer rates on the active wall for the thicknesses were studied for different permeability therefore different Darcy numbers varying over an interval:10-6≤Da≤10. The dimensionless Rayleigh and Reynolds numbers were taken from the rows: 10≤Ra≤106 and 50≤Re≤500. The governing equations of momentum and energy were solved by the Lettice Boltzmann Multiple Relaxation Time Method (LB-MRT) D2Q9 for the velocity field and D2Q5 for the temperature field. In order to take into account the introduction of the porous medium, an additional term is added to the standard LB equations based on the generalized model (Darcy model extended to Brinkman-Forchheimer)

    Study of mixed convection in closed enclosure with a ceiling fan

    No full text
    This paper presents a numerical study of heat transfer by convection in a square cavity. The vertical walls of the cavity are differentially heated and the horizontal ones are considered adiabatic. A fan is placed in the middle of the cavity and releases a jet down. Numerical simulation was performed using the lattice Boltzmann method to show the flow patterns and the heat flux depending on the Rayleigh number (thermal convection intensity) and the Reynolds number (fan-driven flow intensity). A parametric study was performed presenting the influence of Reynolds number (20 ≤ Re ≤ 500), Rayleigh number (10 ≤ Ra ≤ 106) and the fan position (0.2 ≤ HF ≤ 0.8). In forced convection mode, the flow structure has been mapped according to the position and the power of the fan. Three structures have emerged: two symmetrical cells, four symmetrical cells and asymmetrical structure. It has been observed that the heat transfer rate increases with the rise of Reynolds number and the reduction of the distance of the fan position from the ceiling. For the latter one, an unfavorable evolution of Nusselt number is observed for Ra > 104

    Time-Periodic Cooling of Rayleigh–Bénard Convection

    No full text
    International audienceThe problem of Rayleigh–Bénard’s natural convection subjected to a temporally periodic cooling condition is solved numerically by the Lattice Boltzmann method with multiple relaxation time (LBM-MRT). The study finds its interest in the field of thermal comfort where current knowledge has gaps in the fundamental phenomena requiring their exploration. The Boussinesq approximation is considered in the resolution of the physical problem studied for a Rayleigh number taken in the range 103 ≤ Ra ≤ 106 with a Prandtl number equal to 0.71 (air as working fluid). The physical phenomenon is also controlled by the amplitude of periodic cooling where, for small values of the latter, the results obtained follow a periodic evolution around an average corresponding to the formulation at a constant cold temperature. When the heating amplitude increases, the physical phenomenon is disturbed, the stream functions become mainly multicellular and an aperiodic evolution is obtained for the heat transfer illustrated by the average Nusselt number

    Time-Periodic Cooling of Rayleigh–Bénard Convection

    No full text
    The problem of Rayleigh–Bénard’s natural convection subjected to a temporally periodic cooling condition is solved numerically by the Lattice Boltzmann method with multiple relaxation time (LBM-MRT). The study finds its interest in the field of thermal comfort where current knowledge has gaps in the fundamental phenomena requiring their exploration. The Boussinesq approximation is considered in the resolution of the physical problem studied for a Rayleigh number taken in the range 103 ≤ Ra ≤ 106 with a Prandtl number equal to 0.71 (air as working fluid). The physical phenomenon is also controlled by the amplitude of periodic cooling where, for small values of the latter, the results obtained follow a periodic evolution around an average corresponding to the formulation at a constant cold temperature. When the heating amplitude increases, the physical phenomenon is disturbed, the stream functions become mainly multicellular and an aperiodic evolution is obtained for the heat transfer illustrated by the average Nusselt number

    LBM-MRT simulation of vertical flow of a non-Newtonian fluid in a channel provided with obstacles

    Get PDF
    Forced convection heat transfer in channels with a block has been studied numerically. The vertical walls are differentially heated. The Lattice Boltzmann Method with multiple relaxation time (MRT) has been used to solve numerically the momentum and the heat transfer governing equations. This study details the effects of variations in the Reynolds number, Rayleigh number, and behavior index of fluid, to illustrate important fundamental and practical results. The results show that the recirculation caused by porous-covering block will significantly enhance the heat transfer rate on both top and right faces of second and subsequent blocks. In order to better understand the different elements of the study, we first analyzed the flow in a channel without obstacles in order to understand the behavior of non-Newtonian fluids. in such situations, we have observed that the speed profiles at establishment are essentially dependent on the behavior index, while the heat transfers are proportional to the Reynolds and Prandtl numbers but inversely to the behavior index

    Analysis of Thermal Performances in a Ventilated Room Using LBM-MRT: Effect of a Porous Separation

    No full text
    This article demonstrates the feasibility of porous separation on the performance of displacement ventilation in a rectangular enclosure. A jet of fresh air enters the cavity through an opening at the bottom of the left wall and exits through an opening at the top of the right wall. The porous separation is placed in the center of the cavity and its height varies between 0.2 and 0.8 with three values of thickness, 0.1, 0.2, and 0.3. The heat transfer rate was calculated for different intervals of Darcy (10−6 ≤ Da ≤ 10), Rayleigh (10 ≤ Ra ≤ 106), and Reynolds (50 ≤ Re ≤ 500) numbers. The momentum and the energy equations were solved by the lattice Boltzmann method with multiple relaxation times (LB-MRT). Schemes D2Q9 and D2Q5 were chosen for the velocity and temperature fields, respectively. For porous separation, the generalized Darcy–Brinkman–Forchheimer model was adopted. It is represented by a term added in the standard LB equations. For the dynamic domain, numerical simulations revealed complex flow structures depending on all control parameters. The results showed that the thermal field, mainly in the second compartment, is very dependent on the size and permeability of the porous separation. However, they have no influence on the transfer rate
    corecore