28 research outputs found

    A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance.

    Get PDF
    K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives

    Identification, Design and Biological Evaluation of Bisaryl Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2)

    Get PDF
    A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure-activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC(50) against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc(1), and studies to determine the potential advantage of this dual-targeting effect are in progress

    Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential

    Get PDF
    Objectives Artemisinin and artemisinin semi-synthetic derivatives (collectively known as endoperoxides) are first-line antimalarials for the treatment of uncomplicated and severe malaria. Endoperoxides display very fast killing rates and are generally recalcitrant to parasite resistance development. These key pharmacodynamic features are a result of a complex mechanism of action, the details of which lack consensus. Here, we report on the primary physiological events leading to parasite death. Methods Parasite mitochondrial (Διm) and plasma membrane (Διp) electrochemical potentials were measured using real-time single-cell imaging following exposure to pharmacologically relevant concentrations of endoperoxides (artemisinin, dihydroartemisinin, artesunate and the synthetic tetraoxane RKA182). In addition, mitochondrial electron transport chain components NADH:quinone oxidoreductase (alternative complex I), bc1 (complex III) and cytochrome oxidase (complex IV) were investigated to determine their functional sensitivity to the various endoperoxides. Results Parasite exposure to endoperoxides resulted in rapid depolarization of parasite Διm and Διp. The rate of depolarization was decreased in the presence of a reactive oxygen species (ROS) scavenger and Fe3+ chelators. Depolarization of Διm by endoperoxides is not believed to be through the inhibition of mitochondrial electron transport chain components, owing to the lack of significant inhibition when assayed directly. Conclusions The depolarization of Διm and Διp is shown to be mediated via the generation of ROS that are initiated by iron bioactivation of endoperoxides and/or catalysed by iron-dependent oxidative stress. These data are discussed in the context of current hypotheses concerning the mode of action of endoperoxides

    Synthesis of 1,2,4-trioxepanes via application of thiol-olefin Co-oxygenation methodology

    No full text
    Thiol-olefin co-oxygenation (TOCO) of substituted allylic alcohols generates beta-hydroxy peroxides that can be condensed in situ with various ketones, to afford a series of functionalised 1,2,4-trioxepanes in good yields. Manipulation of the phenylsulfenyl group in 8a-8c allows for convenient modification to the spiro-trioxepane substituents. Surprisingly, and in contrast to the 1,2,4-trioxanes examined, 1,2,4-trioxepanes are inactive as antimalarials up to 1000 nM and we rationalize this observation based on the inherent stability of these systems to ferrous mediated degradation. FMO calculations clearly show that the sigma* orbital of the peroxide moiety of 1,2,4-trioxane derivatives 4a and 14b are lower in energy and more accessible to attack by Fe(II) compared to their trioxepane analogues 8b and 9b. (c) 2006 Published by Elsevier Ltd

    Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: Effects of mass accuracy on location-constrained fits

    No full text
    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne high-resolution aerosol mass spectrometers (HR-AMSs) have not been previously addressed as a source of imprecision for these or similar instruments. This manuscript evaluates the significance of this imprecision and proposes a method for their estimation in routine data analysis. In the first part of this work, it is shown that peak-integration errors are expected to scale linearly with peak height for the constrained-peak-shape fits performed in the HR-AMS. An empirical analysis is undertaken to investigate the most complex source of peak-integration imprecision: the imprecision in fitted peak height, σh. It is shown that the major contributors to σh are the imprecision and bias inherent in the m/z calibration, both of which may arise due to statistical and physical non-idealities of the instrument. A quantitative estimation of these m/z-calibration imprecisions and biases show that they may vary from ion to ion, even for ions of similar m/z. In the second part of this work, the empirical analysis is used to constrain a Monte Carlo approach for the estimation of σh and thus the peak-integration imprecision. The estimated σh for selected well-separated peaks (for which m/z-calibration imprecision and bias could be quantitatively estimated) scaled linearly with peak height as expected (i.e. as n1). In combination with the imprecision in peak-width quantification (which may be easily and directly estimated during quantification), peak-fitting imprecisions therefore dominate counting imprecisions (which scale as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision even for well-resolved peaks. We illustrate the importance of this conclusion by performing positive matrix factorization on a synthetic HR-AMS data set both with and without its inclusion. In the third part of this work, the Monte Carlo approach is extended to the case of an arbitrary number of overlapping peaks. Here, a modification to the empirically constrained approach was needed, because the ion-specific m/z-calibration bias and imprecision can generally only be estimated for well-resolved peaks. The modification is to simply overestimate the m/z-calibration imprecision in all cases. This overestimation results in only a slight overestimate of σh, while significantly reducing the sensitivity of σh to the unknown, ion-specific m/z-calibration biases. Thus, with only the measured data and an approximate estimate of the order of magnitude of m/z-calibration biases as input, conservative and unbiased estimates of peak-integration imprecisions may be obtained for each peak in any ensemble of overlapping peaks.ISSN:1867-1381ISSN:1867-854

    Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria.

    No full text
    There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc(1). Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria

    Synthesis and profiling of benzylmorpholine 1,2,4,5-tetraoxane analogue N205: Towards tetraoxane scaffolds with potential for single dose cure of malaria

    No full text
    A series of aryl carboxamide and benzylamino dispiro 1,2,4,5-tetraoxane analogues have been designed and synthesized in a short synthetic sequence from readily available starting materials. From this series of endoperoxides, molecules with in vitro IC50s versus Plasmodium falciparum (3D7) as low as 0.84 nM were identified. Based on an assessment of blood stability and in vitro microsomal stability, N205 (10a) was selected for rodent pharmacokinetic and in vivo antimalarial efficacy studies in the mouse Plasmodium berghei and Plasmodium falciparum Pf3D70087/N9 severe combined immunodeficiency (SCID) mouse models. The results indicate that the 4-benzylamino derivatives have excellent profiles with a representative of this series, N205, an excellent starting point for further lead optimization studies
    corecore