6,585 research outputs found

    A report on the sea otter, Enhydra lutris L., in California

    Get PDF
    This report discusses in detail findings and observations of 5 years of research on the sea otter population and its relationship to the nearshore marine environment in California. Initial efforts were directed at providing some relief to the commercial abalone fishery in the Cambria - Point Estero area north of Morro Bay. This fishery has subsequently collapsed along with other commercial and sport abalone and sport crab fisheries throughout the sea otter's range due to continued sea otter foraging. Capturing, tagging and translocation studies, censusing studies, examination of sea otter remains, habitat surveys, food habits observations and studies on otters in captivity provide a broad base of information on the expanding sea otter population in California and its effects on resources utilized by man. Recommendations for sea otter management consistent with esthetic, recreational, and commercial uses of marine resources are included in this report. (95pp.

    Convex optimization for the planted k-disjoint-clique problem

    Get PDF
    We consider the k-disjoint-clique problem. The input is an undirected graph G in which the nodes represent data items, and edges indicate a similarity between the corresponding items. The problem is to find within the graph k disjoint cliques that cover the maximum number of nodes of G. This problem may be understood as a general way to pose the classical `clustering' problem. In clustering, one is given data items and a distance function, and one wishes to partition the data into disjoint clusters of data items, such that the items in each cluster are close to each other. Our formulation additionally allows `noise' nodes to be present in the input data that are not part of any of the cliques. The k-disjoint-clique problem is NP-hard, but we show that a convex relaxation can solve it in polynomial time for input instances constructed in a certain way. The input instances for which our algorithm finds the optimal solution consist of k disjoint large cliques (called `planted cliques') that are then obscured by noise edges and noise nodes inserted either at random or by an adversary

    A geometric approach to three-dimensional hipped bipedal robotic walking

    Get PDF
    This paper presents a control law that results in stable walking for a three-dimensional bipedal robot with a hip. To obtain this control law, we utilize techniques from geometric reduction, and specifically a variant of Routhian reduction termed functional Routhian reduction, to effectively decouple the dynamics of the three-dimensional biped into its sagittal and lateral components. Motivated by the decoupling afforded by functional Routhian reduction, the control law we present is obtained by combining three separate control laws: the first shapes the potential energy of the sagittal dynamics of the biped to obtain stable walking gaits when it is constrained to the sagittal plane, the second shapes the total energy of the walker so that functional Routhian reduction can be applied to decoupling the dynamics of the walker for certain initial conditions, and the third utilizes an output zeroing controller to stabilize to the surface defining these initial conditions. We numerically verify that this method results in stable walking, and we discuss certain attributes of this walking gait

    Upside and Downside Risk Exposures of Currency Carry Trades via Tail Dependence

    Full text link
    Currency carry trade is the investment strategy that involves selling low interest rate currencies in order to purchase higher interest rate currencies, thus profiting from the interest rate differentials. This is a well known financial puzzle to explain, since assuming foreign exchange risk is uninhibited and the markets have rational risk-neutral investors, then one would not expect profits from such strategies. That is, according to uncovered interest rate parity (UIP), changes in the related exchange rates should offset the potential to profit from such interest rate differentials. However, it has been shown empirically, that investors can earn profits on average by borrowing in a country with a lower interest rate, exchanging for foreign currency, and investing in a foreign country with a higher interest rate, whilst allowing for any losses from exchanging back to their domestic currency at maturity. This paper explores the financial risk that trading strategies seeking to exploit a violation of the UIP condition are exposed to with respect to multivariate tail dependence present in both the funding and investment currency baskets. It will outline in what contexts these portfolio risk exposures will benefit accumulated portfolio returns and under what conditions such tail exposures will reduce portfolio returns.Comment: arXiv admin note: substantial text overlap with arXiv:1303.431

    Safe Policy Synthesis in Multi-Agent POMDPs via Discrete-Time Barrier Functions

    Get PDF
    A multi-agent partially observable Markov decision process (MPOMDP) is a modeling paradigm used for high-level planning of heterogeneous autonomous agents subject to uncertainty and partial observation. Despite their modeling efficiency, MPOMDPs have not received significant attention in safety-critical settings. In this paper, we use barrier functions to design policies for MPOMDPs that ensure safety. Notably, our method does not rely on discretization of the belief space, or finite memory. To this end, we formulate sufficient and necessary conditions for the safety of a given set based on discrete-time barrier functions (DTBFs) and we demonstrate that our formulation also allows for Boolean compositions of DTBFs for representing more complicated safe sets. We show that the proposed method can be implemented online by a sequence of one-step greedy algorithms as a standalone safe controller or as a safety-filter given a nominal planning policy. We illustrate the efficiency of the proposed methodology based on DTBFs using a high-fidelity simulation of heterogeneous robots.Comment: 8 pages and 4 figure

    Solvent action of nitrification and sulfofication

    Get PDF
    Cover title.Bibliography: p. 257.Mode of access: Internet

    Control Barrier Function Based Quadratic Programs for Safety Critical Systems

    Get PDF
    Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions -- expressed as control barrier functions -- to be unified with performance objectives -- expressed as control Lyapunov functions -- in the context of real-time optimization-based controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds

    Barrier Functions for Multiagent-POMDPs with DTL Specifications

    Get PDF
    Multi-agent partially observable Markov decision processes (MPOMDPs) provide a framework to represent heterogeneous autonomous agents subject to uncertainty and partial observation. In this paper, given a nominal policy provided by a human operator or a conventional planning method, we propose a technique based on barrier functions to design a minimally interfering safety-shield ensuring satisfaction of high-level specifications in terms of linear distribution temporal logic (LDTL). To this end, we use sufficient and necessary conditions for the invariance of a given set based on discrete-time barrier functions (DTBFs) and formulate sufficient conditions for finite time DTBF to study finite time convergence to a set. We then show that different LDTL mission/safety specifications can be cast as a set of invariance or finite time reachability problems. We demonstrate that the proposed method for safety-shield synthesis can be implemented online by a sequence of one-step greedy algorithms. We demonstrate the efficacy of the proposed method using experiments involving a team of robots
    corecore