14 research outputs found

    Characterization and Exploitation of Bidirectional Allosteric Coupling in Multi-Domain Tyrosine Kinases using Conformation-Selective ATP-Competitive Inhibitors

    No full text
    Thesis (Ph.D.)--University of Washington, 2016-08Protein kinases are a large family of enzymes that play integral roles in cell signaling networks and are thus critical for effecting appropriate cellular responses to environmental stimuli. Much of kinase biological function has been studied in terms of catalytic activity: phosphorylation of substrate proteins as part of signaling cascades. However, recent evidence has shown that kinases play many important non-catalytic functions such as DNA-binding, scaffolding, and participating in a variety of physiologically relevant protein-protein interactions. While critical, these roles have not been thoroughly explored, in large part due to limited availability of selective ATP-competitive inhibitors. Selectivity for a specific kinase is difficult to achieve due to high structural homology between the ATP-binding sites of the 518 human kinases. Additionally, it has been shown over the past two decades that it is possible to stabilize structurally distinct ATP-binding site conformations using conformation-selective inhibitors, termed Type I and Type II inhibitors, in many kinases. In several cases, inhibition of kinase ATP-binding sites with Type I or Type II inhibitors has been shown to divergently affect cell signaling events as a result of allosteric coupling between important structural features in the ATP-binding site and distal protein-protein interaction sites on the inhibited kinase. Thus, it is important not only to build selective ATP-competitive inhibitors but to understand how their binding affects global kinase conformation through allosteric coupling. This thesis describes my work characterizing allosteric networks in multi-domain tyrosine kinases (Src-Family Kinases (SFKs) and Abl) using conformation-selective inhibitors as well as developing a method for using conformation-selective inhibitors in cells to better understand how non-catalytic function of a kinase of interest determines its role in cell signaling networks

    Bioassay Development for Bispecific Antibodies—Challenges and Opportunities

    No full text
    Antibody therapeutics are expanding with promising clinical outcomes, and diverse formats of antibodies are further developed and available for patients of the most challenging disease areas. Bispecific antibodies (BsAbs) have several significant advantages over monospecific antibodies by engaging two antigen targets. Due to the complicated mechanism of action, diverse structural variations, and dual-target binding, developing bioassays and other types of assays to characterize BsAbs is challenging. Developing bioassays for BsAbs requires a good understanding of the mechanism of action of the molecule, principles and applications of different bioanalytical methods, and phase-appropriate considerations per regulatory guidelines. Here, we review recent advances and case studies to provide strategies and insights for bioassay development for different types of bispecific molecules

    Hair Dye Toxicology

    No full text

    Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology?

    No full text
    Establishing causal relationships between environmental exposures and common diseases is beset with problems of unresolved confounding, reverse causation and selection bias that may result in spurious inferences. Mendelian randomization, in which a functional genetic variant acts as a proxy for an environmental exposure, provides a means of overcoming these problems as the inheritance of genetic variants is independent of-that is randomized with respect to-the inheritance of other traits, according to Mendel's law of independent assortment. Examples drawn from exposures and outcomes as diverse as milk and osteoporosis, alcohol and coronary heart disease, sheep dip and farm workers' compensation neurosis, folate and neural tube defects are used to illustrate the applications of Mendelian randomization approaches in assessing potential environmental causes of disease. As with all genetic epidemiology studies there are problems associated with the need for large sample sizes, the non-replication of findings, and the lack of relevant functional genetic variants. In addition to these problems, Mendelian randomization findings may be confounded by other genetic variants in linkage disequilibrium with the variant under study, or by population stratification. Furthermore, pleiotropy of effect of a genetic variant may result in null associations, as may canalisation of genetic effects. If correctly conducted and carefully interpreted, Mendelian randomization studies can provide useful evidence to support or reject causal hypotheses linking environmental exposures to common diseases
    corecore