3 research outputs found

    Direct Diastereo- and Enantioselective Vinylogous Michael Additions of Linear Enones

    No full text
    A direct vinylogous Michael addition using linear vinylogous Michael donors has been developed. Notably, even γ-substituted Michael donors cleanly afforded γ-alkylated products in high yield and ee by this method. Moreover, control experiments revealed that, for these and related linear vinylogous Michael donors, the size of the Michael acceptor strongly influences whether α- or γ-alkylation occurs, not simply blocking effects of cocatalysts as suggested previously

    Direct Diastereo- and Enantioselective Vinylogous Michael Additions of Linear Enones

    No full text
    A direct vinylogous Michael addition using linear vinylogous Michael donors has been developed. Notably, even γ-substituted Michael donors cleanly afforded γ-alkylated products in high yield and ee by this method. Moreover, control experiments revealed that, for these and related linear vinylogous Michael donors, the size of the Michael acceptor strongly influences whether α- or γ-alkylation occurs, not simply blocking effects of cocatalysts as suggested previously

    Diverted Total Synthesis of Carolacton-Inspired Analogs Yields Three Distinct Phenotypes in <i>Streptococcus mutans</i> Biofilms

    No full text
    The oral microbiome is a dynamic environment inhabited by both commensals and pathogens. Among these is Streptococcus mutans, the causative agent of dental caries, the most prevalent childhood disease. Carolacton has remarkably specific activity against S. mutans, causing acid-mediated cell death during biofilm formation; however, its complex structure limits its utility. Herein, we report the diverted total synthesis and biological evaluation of a rationally designed library of simplified analogs that unveiled three unique biofilm phenotypes further validating the role of natural product synthesis in the discovery of new biological phenomena
    corecore