113 research outputs found
Spherical collapse with dark energy
I discuss the work of Maor and Lahav [1], in which the inclusion of dark
energy into the spherical collapse formalism is reviewed. Adopting a
phenomenological approach, I consider the consequences of - a) allowing the
dark energy to cluster, and, b) including the dark energy in the virialization
process. Both of these issues affect the final state of the system in a
fundamental way. The results suggest a potentially differentiating signature
between a true cosmological constant and a dynamic form of dark energy. This
signature is unique in the sense that it does not depend on a measurement of
the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop,
19 - 24 June 2005, Peyresq, Franc
Age constraints and fine tuning in variable-mass particle models
VAMP (variable-mass particles) scenarios, in which the mass of the cold dark
matter particles is a function of the scalar field responsible for the present
acceleration of the Universe, have been proposed as a solution to the cosmic
coincidence problem, since in the attractor regime both dark energy and dark
matter scale in the same way. We find that only a narrow region in parameter
space leads to models with viable values for the Hubble constant and dark
energy density today. In the allowed region, the dark energy density starts to
dominate around the present epoch and consequently such models cannot solve the
coincidence problem. We show that the age of the Universe in this scenario is
considerably higher than the age for noncoupled dark energy models, and
conclude that more precise independent measurements of the age of the Universe
would be useful in distinguishing between coupled and noncoupled dark energy
models.Comment: 7 pages, 8 figures, matches the Phys. Rev. D published versio
Oscillatory behavior of closed isotropic models in second order gravity theory
Homogeneous and isotropic models are studied in the Jordan frame of the
second order gravity theory. The late time evolution of the models is analysed
with the methods of the dynamical systems. The normal form of the dynamical
system has periodic solutions for a large set of initial conditions. This
implies that an initially expanding closed isotropic universe may exhibit
oscillatory behaviour.Comment: 16 pages, 3 figures. With some minor improvements. To appear in
General Relativity and Gravitatio
Equilibrium and stability of neutrino lumps as TOV solutions
We report about stability conditions for static, spherically symmetric
objects that share the essential features of mass varying neutrinos in
cosmological scenarios. Compact structures of particles with variable mass are
held together preponderantly by an attractive force mediated by a background
scalar field. Their corresponding conditions for equilibrium and stability are
given in terms of the ratio between the total mass-energy and the spherical
lump radius, . We show that the mass varying mechanism leading to lump
formation can modify the cosmological predictions for the cosmological neutrino
mass limits. Our study comprises Tolman-Oppenheimer-Volkoff solutions of
relativistic objects with non-uniform energy densities. The results leave open
some questions concerning stable regular solutions that, to an external
observer, very closely reproduce the preliminary conditions to form
Schwarzschild black holes.Comment: 20 pages, 5 figure
Conformal aspects of Palatini approach in Extended Theories of Gravity
The debate on the physical relevance of conformal transformations can be
faced by taking the Palatini approach into account to gravitational theories.
We show that conformal transformations are not only a mathematical tool to
disentangle gravitational and matter degrees of freedom (passing from the
Jordan frame to the Einstein frame) but they acquire a physical meaning
considering the bi-metric structure of Palatini approach which allows to
distinguish between spacetime structure and geodesic structure. Examples of
higher-order and non-minimally coupled theories are worked out and relevant
cosmological solutions in Einstein frame and Jordan frames are discussed
showing that also the interpretation of cosmological observations can
drastically change depending on the adopted frame
Cosmology with a long range repulsive force
We consider a class of cosmological models in which the universe is filled
with a (non-electric) charge density that repels itself by means of a force
carried by a vector boson with a tiny mass. When the vector's mass depends upon
other fields, the repulsive interaction gives rise to an electromagnetic
barrier which prevents these fields from driving the mass to zero. This can
modify the cosmology dramatically. We present a very simple realization of this
idea in which the vector's mass arises from a scalar field. The electromagnetic
barrier prevents this field from rolling down its potential and thereby leads
to accelerated expansion.Comment: 15 pages, 8 figures, LaTeX (version accepted for publication in PRD).
3 new figures, extended discussion of observational consequence
f(R,L_m) gravity
We generalize the type gravity models by assuming that the
gravitational Lagrangian is given by an arbitrary function of the Ricci scalar
and of the matter Lagrangian . We obtain the gravitational field
equations in the metric formalism, as well as the equations of motion for test
particles, which follow from the covariant divergence of the energy-momentum
tensor. The equations of motion for test particles can also be derived from a
variational principle in the particular case in which the Lagrangian density of
the matter is an arbitrary function of the energy-density of the matter only.
Generally, the motion is non-geodesic, and takes place in the presence of an
extra force orthogonal to the four-velocity. The Newtonian limit of the
equation of motion is also considered, and a procedure for obtaining the
energy-momentum tensor of the matter is presented. The gravitational field
equations and the equations of motion for a particular model in which the
action of the gravitational field has an exponential dependence on the standard
general relativistic Hilbert--Einstein Lagrange density are also derived.Comment: 6 pages, no figures; minor modifications, references added; accepted
for publication in EPJ
Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model
In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified
dark matter and dark energy model. The energy density of GCG model is given as
,
where and are two model parameters which will be constrained by
type Ia supernova as standard candles, baryon acoustic oscillation as standard
rulers and the seventh year full WMAP data points. In this paper, we will not
separate GCG into dark matter and dark energy parts any more as adopted in the
literatures. By using Markov Chain Monte Carlo method, we find the result:
and .Comment: 6 pages, 4 figure
Cosmic acceleration from second order gauge gravity
We construct a phenomenological theory of gravitation based on a second order
gauge formulation for the Lorentz group. The model presents a long-range
modification for the gravitational field leading to a cosmological model
provided with an accelerated expansion at recent times. We estimate the model
parameters using observational data and verify that our estimative for the age
of the Universe is of the same magnitude than the one predicted by the standard
model. The transition from the decelerated expansion regime to the accelerated
one occurs recently (at ).Comment: RevTex4 15 pages, 1 figure. Accepted for publication in Astrophysics
& Space Scienc
On Physical Equivalence between Nonlinear Gravity Theories
We argue that in a nonlinear gravity theory, which according to well-known
results is dynamically equivalent to a self-gravitating scalar field in General
Relativity, the true physical variables are exactly those which describe the
equivalent general-relativistic model (these variables are known as Einstein
frame). Whenever such variables cannot be defined, there are strong indications
that the original theory is unphysical. We explicitly show how to map, in the
presence of matter, the Jordan frame to the Einstein one and backwards. We
study energetics for asymptotically flat solutions. This is based on the
second-order dynamics obtained, without changing the metric, by the use of a
Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the
ADM energy is positive for solutions close to flat space. The proof of this
Positive Energy Theorem relies on the existence of the Einstein frame, since in
the (Helmholtz--)Jordan frame the Dominant Energy Condition does not hold and
the field variables are unrelated to the total energy of the system.Comment: 37 pp., TO-JLL-P 3/93 Dec 199
- …