330 research outputs found

    Self-Organizing Map Classification of the Extremely Low-Frequency Magnetic Field Produced by Typical Tablet Computers

    Get PDF
    Abstract In this paper, the extremely low frequency magnetic field produced by the tablet computers is explored. The measurement of the tablet computers' magnetic field is performed by using a measuring geometry previously proposed for the laptop computers. The experiment is conducted on five Android tablet computers. The measured values of the magnetic field are compared to the widely accepted TCO safety standard. Then, the results are classified by the Self-Organizing Map method in order to create different levels of safety or danger concerning the magnetic field to which tablet computer users are exposed. Furthermore, a brief comparison of the obtained magnetic field levels with the ones from typical laptops is performed. At the end, a practical suggestion on how to avoid the high exposure to the low frequency magnetic field emitted by the tablet computers is given

    Stereotactic Irradiation of GH-Secreting Pituitary Adenomas

    Get PDF
    Radiotherapy (RT) is often employed in patients with acromegaly refractory to medical and/or surgical interventions in order to prevent tumour regrowth and normalize elevated GH and IGF-I levels. It achieves tumour control and hormone normalization up to 90% and 70% of patients at 10–15 years. Despite the excellent tumour control, conventional RT is associated with a potential risk of developing late toxicity, especially hypopituitarism, and its role in the management of patients with GH-secreting pituitary adenomas remains a matter of debate. Stereotactic techniques have been developed with the aim to deliver more localized irradiation and minimize the long-term consequences of treatment, while improving its efficacy. Stereotactic irradiation can be given in a single dose as stereotactic radiosurgery (SRS) or in multiple doses as fractionated stereotactic radiotherapy (FSRT). We have reviewed the recent published literature on stereotactic techniques for GH-secreting pituitary tumors with the aim to define the efficacy and potential adverse effects of each of these techniques

    Exploiting tumour addiction with a serine and glycine-free diet.

    Get PDF
    Understanding cancer metabolism is key to unveil the Achilles’ heel of cancer cells and provide novel therapeutic interventions for patients. While the rerouting of metabolic pathways during development1 or cancer transformation and progression2, 3, 4 has been extensively characterised, the exact dynamic of these events, their distribution and frequency in the different tumour types, and the correlation with genetic background remain largely unknown. In a recent article published in Nature, Karen Vousden’s team assesses the effect of serine and glycine dietary restriction in autochthonous mouse tumour models driven by different oncogenes (Maddocks et al, 2017)5, leading to potential area of therapeutic intervention

    Metabolic effect of TAp63? enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense

    Get PDF
    TAp63? is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation.In order to assess whether TAp63? plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in which the expression of TAp63? was dependent on doxycycline supplementation to the medium. Metabolomics labeling experiments were performed by incubating the cells in 13C-glucose or 13C15N-glutamine-labeled culture media, as to monitor metabolic fluxes upon induced expression of TAp63?.Induced expression of TAp63? resulted in cell cycle arrest at the G1 phase. From a metabolic standpoint, expression of Tap63? promoted glycolysis and the pentose phosphate pathway, which was uncoupled from nucleotide biosynthesis, albeit prevented oxidative stress in the form of oxidized glutathione. Double 13C-glucose and 13C15N-glutamine metabolic labeling confirmed that induced expression of TAp63? corresponded to a decreased flux of pyruvate to the Krebs cycle and decreased utilization of glutamine for catabolic purposes in the TCA cycle. Results were not conclusive in relation to anabolic utilization of labeled glutamine, since it is unclear to what extent the observed minor TAp63?-dependent increases of glutamine-derived labeling in palmitate could be tied to increased rates of reductive carboxylation and de novo synthesis of fatty acids. Finally, bioinformatics elaborations highlighted a link between patient survival rates and the co-expression of p63 and rate limiting enzymes of the pentose phosphate pathway, G6PD and PGD

    The biodiversity of freshwater Crustaceans revealed by taxonomy and mitochondrial DNA barcodes

    Get PDF
    Cytochrome oxidase subunit I (COI) barcode sequences in this file were obtained from specimens collected by plankton net in western Lake Erie in 2012 & 2013, along with later specimens collected at various locations and times, including some collected in Belize in 2015. Methods and other details about these sequences are described in a paper by the same authors in a submitted publication (2021: URL to be given here when published). The right columns below contain additional notes on lengths of sequences, GenBank accession ID (when obtained), and annotation as to whether the sequence represents a new barcode for its genus or species taxon. According to our experience, a DNA identity of \u3e96.5% with previous GenBank barcodes is a reliable range for determining a species level barcode for that morpho species; a DNA identity of 90.5% to 96.5% with previous barcodes is sufficient to identify genus. DNA identities within these ranges are considered to be barcode confirmations. Conversely, DNA identities outside of these ranges are considered to be new barcodes for that species or genus, respectively. Contradictions with previous GenBank sequences are discussed in the manuscript. The submitted manuscript includes the highest percentage identity to a previous sequence in GenBank as determined by BLASTN in June2021. The FASTA file name given here begins with a Ram Lab ID number-location and date of collection with format varying somewhat between various collections/collectors but generally including several (usually three) location letters (e.g., BHL stands for Blue Heron Lagoon) and the date usually in a 6-character format of MMDDYY, and optionally a sample number for that date either preceding the location letters or following the date. Collection location abbreviations include the following: All sequences starting with PM, Toledo Harbor in western Lake Erie; LMUSK, Lake Muskoday, Belle Isle, Detroit; SCL, Saint Clair River; BHL, Blue Heron Lagoon, Belle Isle; LE, LakeErie; LSC, Lake St.Clair; MMLE; Metzgers Marsh, LakeErie; MM, Metzgers Marsh; LP, Leonard Preserve, Manchester, Michigan; HR, Huron River Drive, Ypsilanti, Michigan; LCL, Little Cedar Lake, Orion, MI; HLE, Harbor Lake Erie; LHLE, Lorain Harbor Lake Erie; BZEB1P, Cenote in Shipstern Reserve, Corozal, Belize, Central America

    Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy Images

    Full text link
    Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000\mathbf{27,000} μm3\mathbf{\mu m^3} volume of brain tissue over a cube of 30  μm\mathbf{30 \; \mu m} in each dimension corresponding to 1000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles

    The C terminus of p73 is essential for hippocampal development

    Get PDF
    The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3′ UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice (Trp73Δ13/Δ13) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal–Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development

    Immunohistochemical Analysis of Myenteric Ganglia and Interstitial Cells of Cajal in Ulcerative Colitis

    Get PDF
    Ulcerative colitis (UC) is an inflammatory bowel disease with alterations of colonic motility, which influence clinical symptoms. Although morpho-functional abnormalities in the enteric nervous system have been suggested, in UC patients scarce attention has been paid to possible changes in the cells that control colonic motility, including myenteric neurons, glial cells, and interstitial cells of Cajal (ICC). This study evaluated the neural-glial components of myenteric ganglia and ICC in the colonic neuromuscular compartment of UC patients by quantitative immunohistochemical analysis. Full-thickness archival samples of the left colon were collected from 10 patients with UC (5 M, 5 F; age range, 45-62 years) who underwent elective bowel resection. The colonic neuromuscular compartment was evaluated immunohistochemically in paraffin cross-sections. The distribution and number of neurons, glial cells and ICC were assessed by anti-HuC/D, -S100β and -c-Kit antibodies, respectively. Data were compared with findings on archival samples of normal left colon from 10 sex- and age-matched control patients, who underwent surgery for uncomplicated colon cancer. Compared to controls, patients with UC showed: (a) reduced density of myenteric HuC/D-positive neurons and S100β-positive glial cells, with a loss over 61% and 38%, respectively, and increased glial cell/neuron ratio; (b) ICC decrease in the whole neuromuscular compartment. The quantitative variations of myenteric neuro-glial cells and ICC indicate considerable alterations of the colonic neuromuscular compartment in the setting of mucosal inflammation associated with UC, and provide a morphological basis for better understanding the motor abnormalities often observed in UC patients

    Safe and sustainable by design chemicals and materials. Framework for the definition of criteria and evaluation procedure for chemicals and materials

    Get PDF
    The EU CSS action plan foresees the development of a framework to define safe and sustainable by design (SSbD) criteria for chemicals and materials. The SSbD is an approach to support the design, development, production and use of chemicals and materials that focuses on providing a desirable function (or service), while avoiding or minimising harmful impacts to human health and the environment. The SSbD concept integrates aspects for the domain of safety, circularity and functionality of chemicals and materials, with sustainability consideration throughout their lifecycle, minimising their environmental footprint. SSbD aims at facilitating the industrial transition towards a safe, zero pollution, climate-neutral and resource-efficient economy, addressing adverse effects on humans, ecosystems and biodiversity from a lifecycle perspective. To fulfil these ambitions, there is the need to develop a new framework for the definition of safe and sustainable by design criteria for chemicals and materials. To do so, several frameworks were reviewed including initiatives from research, industry, governmental agencies and NGOs. Capitalising on this information, a framework was developed and is presented in this report including a methodology for the definition of possible SSbD criteria and implementation mechanisms
    corecore