2 research outputs found

    Cost-effective mitigation of diffuse pollution: setting criteria for river basin management at multiple locations

    No full text
    A case study of the Yorkshire Derwent (UK) catchment is used to illustrate an integrated approach for assessing the viability of policy options for reducing diffuse nitrate losses to waterbodies. For a range of options, modeling methods for simulating river nitrate levels are combined with techniques for estimating the economic costs to agriculture of modifying those levels. By incorporating spatially explicit data and information on catchment residence times (which may span many decades particularly in areas of groundwater discharge) a method is developed for efficient spatial targeting of measures, for example, to the most at-risk freshwater environments. Combining hydrological and economic findings, the analysis reveals that, in terms of cost-effectiveness, the ranking of options is highly sensitive to both (i) whether or not specific stretches of river within a catchment are regarded as a priority for protection, and (ii) the criterion of nitrate concentration deemed most appropriate as an indicator of the health of the environment. Therefore, given the focus under European legislation upon ecological status of freshwaters, these conclusions highlight the need to improve understanding of mechanistic linkages between the chemical and biological dynamics of aquatic systems

    How do river nitrate concentrations respond to changes in land-use? A modelling case-study of headwaters in the River Derwent catchment, North Yorkshire, UK

    No full text
    A combined semi-distributed hydrological model (CASCADE/QUESTOR) is used to evaluate the steady-state that may be achieved after changes in land-use or management and to explore what additional factors need to be considered in representing catchment processes. Two rural headwater catchments of the River Derwent (North Yorkshire, UK) were studied where significant change in land-use occurred in the 1990s and the early 2000s. Much larger increases in mean nitrate concentration (55%) were observed in the catchment with significant groundwater influence (Pickering Beck) compared with the surface water-dominated catchment (13% increase). The increases in Pickering Beck were considerably greater than could be explained by the model in terms of land-use change. Consequently, the study serves to focus attention on the long-term increases in nitrate concentration reported in major UK aquifers and the ongoing and chronic impact this trend is likely to be having on surface water concentrations. For river environments, where groundwater is a source, such trends will mask the impact of measures proposed to reduce the risk of nitrate leaching from agricultural land. Model estimates of within-channel losses account for 15–40% of nitrate entering rivers
    corecore