48 research outputs found

    Diversification of refugia types needed to secure the future of coral reefs subject to climate change

    Get PDF
    Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate

    Suspended sediment prolongs larval development in a coral reef fish

    Get PDF
    Increasing sediment input into coastal environments is having a profound influence on shallow marine habitats and associated species. Coral reef ecosystems appear to be particularly sensitive, with increased sediment deposition and re-suspension being associated with declines in the abundance and diversity of coral reef fishes. While recent research has demonstrated that suspended sediment can have negative impacts on post-settlement coral reef fishes, its effect on larval development has not been investigated. In this study, we tested the effects of different levels of suspended sediment on larval growth and development time in Amphiprion percula, a coral reef damselfish. Larvae were subjected to four experimental concentrations of suspended sediment spanning the range found around coastal coral reefs (0-45 mg l(-1)). Larval duration was significantly longer in all sediment treatments (12 days) compared with the average larval duration in the control treatment (11 days). Approximately 75% of the fish in the control had settled by day 11, compared with only 40-46% among the sediment treatments. In the highest sediment treatment, some individuals had a larval duration twice that of the median duration in the control treatment. Unexpectedly, in the low sediment treatment, fish at settlement were significantly longer and heavier compared with fish in the other treatments, suggesting delayed development was independent of individual condition. A sediment-induced extension of the pelagic larval stage could significantly reduce numbers of larvae competent to settle and, in turn, have major effects on adult population dynamics

    Climate Velocity Can Inform Conservation in a Warming World

    Get PDF
    Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions

    Habitat change mediates the response of coral reef fish populations to terrestrial run-off

    Get PDF
    Coastal fish populations are typically threatened by multiple human activities, including fishing pressure and run-off of terrestrial pollution. Linking multiple threats to their impacts on fish populations is challenging because the threats may influence a species directly, or indirectly, via its habitats and its interactions with other species. Here we examine spatial variation in abundance of coral reef fish across gradients of fishing pressure and turbidity in Fiji. We explicitly account for multiple pathways of influence to test the alternative hypotheses that (1) habitat moderates predation by providing shelter, so habitat loss only affects prey fish populations if there are abundant predators, (2) habitat change co-drives biomass of both prey and predator functional groups. We examined responses of 7 fish functional groups and found that habitat change co-drives both predator and prey responses to turbidity. Abundances of all functional groups were associated with changes in habitat cover; however, the responses of their habitats to turbidity were mixed. Planktivore and piscivore abundance were lower in areas of high turbidity, because cover of their preferred habitats was lower. Invertivore, browser and grazer abundance did not change strongly over the turbidity gradient, because different components of their habitats exhibited both increases and decreases with turbidity. The effects of turbidity on fish populations were minor in areas where fish populations were already depleted by fishing. These findings suggest that terrestrial run-off modifies the composition of reef fish communities indirectly by affecting the benthic habitats that reef fish use

    A Trait‐Based Framework for Assessing the Vulnerability of Marine Species to Human Impacts

    Get PDF
    Marine species and ecosystems are widely affected by anthropogenic stressors, ranging from pollution and fishing to climate change. Comprehensive assessments of how species and ecosystems are impacted by anthropogenic stressors are critical for guiding conservation and management investments. Previous global risk or vulnerability assessments have focused on marine habitats, or on limited taxa or specific regions. However, information about the susceptibility of marine species across a range of taxa to different stressors everywhere is required to predict how marine biodiversity will respond to human pressures. We present a novel framework that uses life-history traits to assess species’ vulnerability to a stressor, which we compare across more than 44,000 species from 12 taxonomic groups (classes). Using expert elicitation and literature review, we assessed every combination of each of 42 traits and 22 anthropogenic stressors to calculate each species’ or representative species group’s sensitivity and adaptive capacity to stressors, and then used these assessments to derive their overall relative vulnerability. The stressors with the greatest potential impact were related to biomass removal (e.g., fisheries), pollution, and climate change. The taxa with the highest vulnerabilities across the range of stressors were mollusks, corals, and echinoderms, while elasmobranchs had the highest vulnerability to fishing-related stressors. Traits likely to confer vulnerability to climate change stressors were related to the presence of calcium carbonate structures, and whether a species exists across the interface of marine, terrestrial, and atmospheric realms. Traits likely to confer vulnerability to pollution stressors were related to planktonic state, organism size, and respiration. Such a replicable, broadly applicable method is useful for informing ocean conservation and management decisions at a range of scales, and the framework is amenable to further testing and improvement. Our framework for assessing the vulnerability of marine species is the first critical step toward generating cumulative human impact maps based on comprehensive assessments of species, rather than habitats

    Limited Progress in Improving Gender and Geographic Representation in Coral Reef Science

    Get PDF
    Despite increasing recognition of the need for more diverse and equitable representation in the sciences, it is unclear whether measurable progress has been made. Here, we examine trends in authorship in coral reef science from 1,677 articles published over the past 16 years (2003–2018) and find that while representation of authors that are women (from 18 to 33%) and from non-OECD nations (from 4 to 13%) have increased over time, progress is slow in achieving more equitable representation. For example, at the current rate, it would take over two decades for female representation to reach 50%. Given that there are more coral reef non-OECD countries, at the current rate, truly equitable representation of non-OECD countries would take even longer. OECD nations also continue to dominate authorship contributions in coral reef science (89%), in research conducted in both OECD (63%) and non-OECD nations (68%). We identify systemic issues that remain prevalent in coral reef science (i.e., parachute science, gender bias) that likely contribute to observed trends. We provide recommendations to address systemic biases in research to foster a more inclusive global science community. Adoption of these recommendations will lead to more creative, innovative, and impactful scientific approaches urgently needed for coral reefs and contribute to environmental justice efforts.We acknowledge the contributions of the many unrecognized and undervalued individuals in coral reef research whose efforts have made it possible for the field to progress. These scientists have collected data, translated across languages, coordinated field work, welcomed foreign visitors to their countries, shared ideas, trained and mentored students, become friends, inspired, and built the foundation for the discipline we know today. We acknowledge the work of all coral reef scientists who continue day after day to pursue equity, inclusion, and justice in the field and for their colleagues and themselves.Ye

    Determining trigger values of suspended sediment for behavioral changes in a coral reef fish

    No full text
    Sediment from land use increases water turbidity and threatens the health of inshore coral reefs. This study performed experiments with a damselfish, Pomacentrus moluccensis, in four sediment treatments, control (0 mg l(-1)), 10 mg l(-1)(similar to 1.7 NTU), 20 mg l(-1)(similar to 3.3 NTU) and 30 mg l(-1) (similar to 5 NTU), to determine when sediment triggers a change in habitat use and movement. We reviewed the literature to assess how frequently P. moluccensis would experience sub-optimal sediment conditions on the reef. Preference for live coral declined from 49.4% to 23.3% and movement between habitats declined from 2.1 to 0.4 times between 20 mg l(-1) and 30 mg l(-1), suggesting a sediment threshold for behavioral changes. Inshore areas of the Great Barrier Reef, P. moluccensis may encounter sub-optimal conditions between 8% and 53% of the time. Changes in these vital processes may have long-term effects on the persistence of populations, particularly as habitat loss on coral reefs increases. (C) 2013 Elsevier Ltd. All rights reserved

    Suspended sediment impairs habitat choice and chemosensory discrimination in two coral reef fishes

    No full text
    Increasing sediment onto coral reefs has been identified as a major source of habitat degradation, and yet little is known about how it affects reef fishes. In this study, we tested the hypothesis that sediment-enriched water impairs the ability of larval damselfish to find suitable settlement sites. At three different experimental concentrations of suspended sediment (45, 90, and 180 mg l−1), pre-settlement individuals of two species (Pomacentrus amboinensis and P. moluccensis) were not able to select their preferred habitat. In a clear water environment (no suspended sediment), both species exhibit a strong preference for live coral over partially dead and dead coral, choosing live coral 70 and 80% of the time, respectively. However, when exposed to suspended sediment, no habitat choice was observed, with individuals of both species settling on live coral, partially dead, and dead coral, at the same frequency. To determine a potential mechanism underlying these results, we tested chemosensory discrimination in sediment-enriched water. We demonstrated that sediment disrupts the ability of this species to respond to chemical cues from different substrata. That is, individuals of P. moluccensis prefer live coral to dead coral in clear water, but in sediment-enriched water, chemical cues from live and dead coral were not distinguished. These results suggest that increasing suspended sediment in coral reef environments may reduce settlement success or survival of coral reef fishes. A sediment-induced disruption of habitat choice may compound the effects of habitat loss on coral reefs

    Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish

    No full text
    Increasing sediment inputs into many coastal marine environments are having a profound influence on shallow marine habitats and their constituent species. Coral reef habitats appear to be particularly sensitive, with increased sediment deposition and turbidity regimes associated with declines in the abundance and diversity of coral reef fishes due to an indirect effect of habitat loss. The direct causes of these declines are largely unknown. In this study we tested the hypothesis that suspended sediment can negatively affect the foraging efficiency, nutritional state and survival of the planktivorous coral reef damselfish, Acanthochromis polyacanthus. Food acquisition, growth rate and body condition were measured in juvenile A. polyacanthus subjected to four experimental concentrations of suspended sediment (up to 180 mg l− 1; 30 NTU). There was a clear effect of suspended sediment on food acquisition. Fish took longer to find food and consumed less of the food provided with increasing sediment. The decline in food acquisition was associated with a significant reduction in juvenile growth and body condition. Fish reared in the medium and high sediment treatments increased in size by less than half the growth rates observed in the control group. Fish held in the control and low sediment treatment had double the surface area of hepatocyte vacuoles in the liver (a proxy for lipid storage) than the fish held in the medium and high sediment treatments. Suspended sediment also caused a significant increase in mortality of the juvenile fish in the high sediment treatment. Mortality reached almost 50% in the high sediment treatment, with no mortality in the control and less than 10% in the intermediate treatments. This study underscores the need to ameliorate increasing suspended sediment in inshore waters due to its potential impact on the growth and survival of planktivorous organisms, which form a vital trophic link between secondary production and fish biomass

    The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish

    Get PDF
    Coral reefs are increasingly subjected to both local and global stressors, however, there is limited information on how reef organisms respond to their combined effects under natural conditions. This field study examined the growth response of the damselfish Neopomacentrus bankieri to the individual and combined effects of multiple abiotic factors. Turbidity, temperature, tidal movement, and wave action were recorded every 10 minutes for four months, after which the daily otolith growth of N. bankieri was aligned with corresponding abiotic conditions. Temperature was the only significant driver of daily otolith increment width, with increasing temperatures resulting in decreasing width. Although tidal movement was not a significant driver of increment width by itself, the combined effect of tidal movement and temperature had a greater negative effect on growth than temperature alone. Our results indicate that temperature can drive changes in growth even at very fine scales, and demonstrate that the cumulative impact of abiotic factors can be substantially greater than individual effects. As abiotic factors continue to change in intensity and duration, the combined impacts of them will become increasingly important drivers of physiological and ecological change
    corecore