42 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern—particularly Alpha, Beta, Delta, and Omicron—on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Results from the WHO external quality assessment for the respiratory syncytial virus pilot, 2016-17

    Get PDF
    BACKGROUND : External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. METHODS : The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. RESULTS : Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. CONCLUSIONS : These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended.The Bill and Melinda Gates Foundation, the Respiratory Viruses Branch, Division of Viral Diseases, CDC, Atlanta, and the CDC International Reagent Resource (IRR), USA.http://www.wileyonlinelibrary.com/journal/irvam2020Medical Virolog

    Results from the WHO external quality assessment for the respiratory syncytial virus pilot, 2016-17

    Get PDF
    Background: External quality assessments (EQAs) for the molecular detection of respiratory syncytial virus (RSV) are necessary to ensure the provision of reliable and accurate results. One of the objectives of the pilot of the World Health Organization (WHO) Global RSV Surveillance, 2016-2017, was to evaluate and standardize RSV molecular tests used by participating countries. This paper describes the first WHO RSV EQA for the molecular detection of RSV. Methods: The WHO implemented the pilot of Global RSV Surveillance based on the WHO Global Influenza Surveillance and Response System (GISRS) from 2016 to 2018 in 14 countries. To ensure standardization of tests, 13 participating laboratories were required to complete a 12 panel RSV EQA prepared and distributed by the Centers for Disease Control and Prevention (CDC), USA. The 14th laboratory joined the pilot late and participated in a separate EQA. Laboratories evaluated a RSV rRT-PCR assay developed by CDC and compared where applicable, other Laboratory Developed Tests (LDTs) or commercial assays already in use at their laboratories. Results: Laboratories performed well using the CDC RSV rRT-PCR in comparison with LDTs and commercial assays. Using the CDC assay, 11 of 13 laboratories reported correct results. Two laboratories each reported one false-positive finding. Of the laboratories using LDTs or commercial assays, results as assessed by Ct values were 100% correct for 1/5 (20%). With corrective actions, all laboratories achieved satisfactory outputs. Conclusions: These findings indicate that reliable results can be expected from this pilot. Continued participation in EQAs for the molecular detection of RSV is recommended. </div

    Results from the second WHO external quality assessment for the molecular detection of respiratory syncytial virus, 2019-2020

    Get PDF
    BACKGROUND: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. METHODS: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. RESULTS: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. CONCLUSIONS: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore