4 research outputs found

    Hygrothermal Behavior of Earth-Based Materials: Experimental and Numerical Analysis

    Get PDF
    Bio-based building materials such as earth bricks are attracting renewed interest throughout the world due to their thermal and environmental properties. In this work, a numerical study of the hygrothermal behavior of building walls consist of compressed earth bricks (CEB) and stabilized earth bricks (SEB) was performed. A two-dimensional Luikov model for evaluating the temperature and the moisture migration in porous building materials was proposed. The coupled heat and moisture transfer problem was modeled. The governing equations of a mathematical model were solved numerically with the finite difference method. Input parameters in the model and their dependency on stabilizers content were determined by laboratory experiments. In order to specify the effect of chemical stabilization on the heat and mass transfer within studied materials, average moisture content and temperature were presented as a function of time. Results show that the addition of chemical stabilizers enhances the heat transfer through the earthen materials and reduces their water vapor permeability

    Hygrothermal Behavior of Earth-Based Materials: Experimental and Numerical Analysis

    No full text
    Bio-based building materials such as earth bricks are attracting renewed interest throughout the world due to their thermal and environmental properties. In this work, a numerical study of the hygrothermal behavior of building walls consist of compressed earth bricks (CEB) and stabilized earth bricks (SEB) was performed. A two-dimensional Luikov model for evaluating the temperature and the moisture migration in porous building materials was proposed. The coupled heat and moisture transfer problem was modeled. The governing equations of a mathematical model were solved numerically with the finite difference method. Input parameters in the model and their dependency on stabilizers content were determined by laboratory experiments. In order to specify the effect of chemical stabilization on the heat and mass transfer within studied materials, average moisture content and temperature were presented as a function of time. Results show that the addition of chemical stabilizers enhances the heat transfer through the earthen materials and reduces their water vapor permeability

    Influence of compaction pressure on the mechanical and acoustic properties of compacted earth blocks: An inverse multi-parameter acoustic problem

    No full text
    International audienceIn this work we focus on the study of the acoustic and mechanical behavior of compressed earth blocks (CEBs). The aim was to study the influence of compaction pressure on the compressive strength and intrinsic acoustic parameters influencing sound absorption of these materials (porosity, tortuosity, airflow resistivity, viscous characteristic length). Specimens made by varying the applied compaction pressure and therefore having various bulk densities were studied. Low bulk density CEBs where stabilized by adding 15% cement. The acoustic absorption coefficients of the different specimens were determined experimentally employing data obtained using the Kundt tube. The intrinsic acoustic parameters were identified by minimizing the discrepancies between the experimentally measured absorption coefficient (α) and the theoretical one modeling the CEBs using the equivalent fluid model. The results showed that the acoustic and mechanical behavior of CEBs were strongly influenced by the applied compaction pressure including, inter alia, the bulk density of the specimen and the added cement used as stabilizer

    Characterization of compressed earth blocks using low frequency guided acoustic waves

    No full text
    International audienceThe objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, airflow resistivity, viscous and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmission coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal to noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks
    corecore