3 research outputs found

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.</jats:p

    Characterization of Sensitivity of Sclerotinia Sclerotiorum Isolates from North Central U.S. to Thiophanate-Methyl and Metconazole

    Get PDF
    Sclerotinia sclerotiorum (Lib.) de Bary causes Sclerotinia stem rot on canola and many other crops of economic importance in the U.S. SSR is primarily controlled with fungicides applied at flowering time. Most fungicides currently used to control SSR can promote resistance buildup in their target populations making monitoring of sensitivity important. In this study the reaction of S. sclerotiorum to thiophanate-methyl (TM) and metconazole (MTZ) was characterized. Samples collected in several states of north central U.S. were used. Three and ten isolates were considered to be moderately insensitive to TM and MTZ, respectively. Greenhouse trials indicated, however, that diseases caused by these isolates could be effectively controlled using currently recommended doses of each compound. In vitro sensitivity to TM was temperature dependent. A previously unreported mutation at codon E111D in the β-tubulin gene of a TM-moderately insensitive isolate was identified

    Cloning and Characterization of rcs5, Spot Blotch Resistance Gene and Pathogen Induced Nec3 Gene Involved in Programmed Cell Death in Barley

    No full text
    Upon sensing pathogens, plants initiating defense responses typically resulting in programmed cell death (PCD). PCD effectively subdues biotrophic pathogens but is hijacked by necrotrophs that colonize the resulting dead tissues. We showed that barley wall associated kinase (WAK) genes, underlying the rcs5 QTL, are manipulated by the necrotrophic fungal pathogen Bipolaris sorokiniana to cause spot blotch disease. The rcs5 genetic interval was delimited to ~0.23 cM, representing an ~234 kb genomic region containing four WAK genes, designated HvWak2, Sbs1, Sbs2, and HvWak5. Post-transcriptional gene silencing of Sbs1&2 in the susceptible barley cultivars Steptoe and Harrington resulted in resistance, suggesting a dominant susceptibility function. Sbs1&2 expression is undetectable in barley prior to pathogen challenge; however, specific upregulation of Sbs1&2 occurred in the susceptible lines post inoculation. Promotor sequence polymorphisms were identified in the allele analysis of Sbs1&2 from eight resistant and two susceptible barley lines, which supported the possible role of promotor regulation by virulent isolates contributing to susceptibility. Apoplastic wash fluids from virulent isolates induced Sbs1expression, suggesting regulation by an apoplastic-secreted effector. Thus, the Sbs1&2 genes are the first susceptibility/resistance genes that confer resistance against spot blotch, a disease that threatens barley and wheat production worldwide. The nec3 mutants of barley are hyper-susceptible to many necrotrophs and show distinctive cream to orange necrotic lesions that are induced by infection, representing aberrant PCD. The γ- irradiation induced necrotic mutant, nec3-γ1 (Bowman) was confirmed as a nec3 mutant by allelism tests. The F2 progeny of a cross of nec3 x Quest inoculated with B. sorokiniana segregated as a single recessive gene fitting a 3 WT: 1 mutant ratio. The homozygous F2 mutant progeny were genotyped with four SSR and 25 SNP markers at nec3 locus on chromosome 6H, a physical region spanning ~ 16.96 Mb containing 91 high and low confidence annotated genes. Exome capture sequencing of nec3 mutants failed to identify a candidate gene, however, RNAseq analysis identified two candidates in the nec3 region with >three-fold downregulation. We hypothesize that the underlying aberrant PCD mechanism in the nec3 barley mutant facilitates extreme susceptibility to multiple adapted fungal pathogens of barley
    corecore