4 research outputs found

    Electrochemical Immunosensor for Detection of IgY in Food and Food Supplements

    Get PDF
    Immunoglobulin Y is a water-soluble protein present in high concentration in hen serum and egg yolk. IgY has applications in many fields, e.g., from food stuff to the mass production of antibodies. In this work, we have implemented an electrochemical immunosensor for IgY based on templated nanoelectrodes ensembles. IgY is captured by the templating polycarbonate and reacted with anti-IgY labeled with horseradish peroxidase. In the presence of H2O2 and methylene blue as the redox mediator, an electrocatalytic current is generated which scales with IgY concentration in the sample. After optimizing the extracting procedure, the immunosensor was applied for analysis of fresh eggs and food integrators. The data obtained with the biosensor were validated by SDS-PAGE and Western blot measurements

    Mesoporous zirconia nanoparticles as drug delivery systems: drug loading, stability and release

    No full text
    Drug delivery systems have been a milestone in medical research in the last twenty years, still representing a key aspect of innovation and evolution in pharmacokinetics and pharmacodynamics. Among several proposed solutions, inorganic mesoporous materials could be a promising vehicle. Their specific chemical-physical properties make them ideal candidates for the adsorption and loading of active pharmaceutical ingredients (API). Recently, mesoporous zirconia nanoparticles (MZNs) have been described as a novel drug delivery system due to their high surface area and biocompatibility. In this work, we investigated the loading and release efficiencies of a wide range of API on MZNs characterized by suitable pore volume and versatility, focusing on the integrity of the released drugs investigated through solution NMR and ESI-MS techniques. In order to explore the potentialities of MZNs for biomedical applications, we selected ibuprofen, N-acetyl-L-cysteine, vancomycin, gentamicin, nitrofurantoin, and indomethacin as benchmark API characterized by a wide range of polarity, molecular weight and presence of different functional groups. MZNs showed to efficiently load and release most of the API investigated. Long time loadings were also investigated observing that, after more than three months, no side reaction occurred on the released drugs except for intrinsically more labile API like NTF and NAC. MZNs ensured high inertness towards a wide range of functional groups such as aliphatic and aromatic amides, acetals of sugar residues as well as several chiral moieties bearing tertiary stereocenter

    Biocompatible tailored zirconia mesoporous nanoparticles with high surface area for theranostic applications

    No full text
    Nanocarriers as theranostic agents are under the spotlight in modern nanomedicine, and mesoporous nanomaterials represent a class of devices of major interest. Zirconia is biocompatible, inert with good mechanical and thermal properties for in vivo biomedical applications. Although a few examples of zirconia nanoparticles have been described, a major limitation was the low surface area, which is fundamental for payload transport. Here, a simple and highly efficient method is described for the synthesis of spherical mesoporous zirconia nanoparticles (MZNs) with a high surface area through a neutral surfactant-assisted sol-gel method. The combination of alkali halides and vacuum extraction allowed stabilization of the shape and size of MZNs and to avoid porous network failure, respectively. In comparison to published synthesis procedures, a high surface area has been obtained. Biological experiments demonstrated that MZNs were biocompatible, cell permeable and degradable providing a proof of concept for theranostic applications. A comparison with the properties of mesoporous silica nanoparticles has also been performed.Nanocarriers as theranostic agents are under the spotlight in modern nanomedicine, and mesoporous nanomaterials represent a class of devices of major interest. Zirconia is biocompatible, inert with good mechanical and thermal properties for in vivo biomedical applications. Although a few examples of zirconia nanoparticles have been described, a major limitation was the low surface area, which is fundamental for payload transport. Here, a simple and highly efficient method is described for the synthesis of spherical mesoporous zirconia nanoparticles (MZNs) with a high surface area through a neutral surfactant-assisted sol-gel method. The combination of alkali halides and vacuum extraction allowed stabilization of the shape and size of MZNs and to avoid porous network failure, respectively. In comparison to published synthesis procedures, a high surface area has been obtained. Biological experiments demonstrated that MZNs were biocompatible, cell permeable and degradable providing a proof of concept for theranostic applications. A comparison with the properties of mesoporous silica nanoparticles has also been performed
    corecore