7 research outputs found

    Harnessing hypoxic adaptation to prevent, treat, and repair stroke

    Get PDF
    The brain demands oxygen and glucose to fulfill its roles as the master regulator of body functions as diverse as bladder control and creative thinking. Chemical and electrical transmission in the nervous system is rapidly disrupted in stroke as a result of hypoxia and hypoglycemia. Despite being highly evolved in its architecture, the human brain appears to utilize phylogenetically conserved homeostatic strategies to combat hypoxia and ischemia. Specifically, several converging lines of inquiry have demonstrated that the transcription factor hypoxia-inducible factor-1 (HIF1-1) mediates the activation of a large cassette of genes involved in adaptation to hypoxia in surviving neurons after stroke. Accordingly, pharmacological or molecular approaches that engage hypoxic adaptation at the point of one of its sensors (e.g., inhibition of HIF prolyl 4 hydroxylases) leads to profound sparing of brain tissue and enhanced recovery of function. In this review, we discuss the potential mechanisms that could subserve protective and restorative effects of augmenting hypoxic adaptation in the brain. The strategy appears to involve HIF-dependent and HIF-independent pathways and more than 70 genes and proteins activated transcriptionally and post-transcriptionally that can act at cellular, local, and system levels to compensate for oxygen insufficiency. The breadth and depth of this homeostatic program offers a hopeful alternative to the current pessimism towards stroke therapeutics

    Antioxidants, HIF Prolyl Hydroxylase Inhibitors or Short Interfering RNAs to BNIP3 or PUMA, Can Prevent Prodeath Effects of the Transcriptional Activator, HIF-1α, in a Mouse Hippocampal Neuronal Line

    No full text
    Hypoxia-inducible factor (HIF) is a transcriptional activator that promotes death or survival in neurons. The regulators and targets of HIF-1α–mediated death remain unclear. We found that prodeath effects of HIF-1 are not attributable to an imbalance in HIF-1α and HIF-1β expression. Rather, the synergistic death caused by oxidative stress and by overexpression of an oxygen-resistant HIF-VP16 in neuroblasts was attributable to transcriptional upregulation of BH3-only prodeath proteins, PUMA or BNIP3. By contrast, overexpression of BNIP3 was not sufficient to potentiate oxidative death. As acidosis is known to activate BNIP3-mediated death, we examined other secondary stresses, such as oxidants or prolyl hydroxylase activity are necessary for exposing the prodeath functions of HIF in neurons. Antioxidants or prolyl hydroxylase inhibition prevented potentiation of death by HIF-1α. Together, these studies suggest that antioxidants and PHD inhibitors abrogate the ability of HIF-mediated transactivation of BH3-only proteins to potentiate oxidative death in normoxia. The findings offer strategies for minimizing the prodeath effects of HIF-1 in neurologic conditions associated with hypoxia and oxidative stress, such as stroke and spinal cord injury. Antioxid. Redox Signal. 11, 1989–1998

    Inhibition of Prolyl Hydroxylase Protects against 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Neurotoxicity: MODEL FOR THE POTENTIAL INVOLVEMENT OF THE HYPOXIA-INDUCIBLE FACTOR PATHWAY IN PARKINSON DISEASE*

    No full text
    Hypoxia-inducible factor (HIF) plays an important role in cell survival by regulating iron, antioxidant defense, and mitochondrial function. Pharmacological inhibitors of the iron-dependent enzyme class prolyl hydroxylases (PHD), which target α subunits of HIF proteins for degradation, have recently been demonstrated to alleviate neurodegeneration associated with stroke and hypoxic-ischemic injuries. Here we report that inhibition of PHD by 3,4-dihydroxybenzoate (DHB) protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic cell loss and up-regulates HIF-1α within these neurons. Elevations in mRNA and protein levels of HIF-dependent genes heme oxygenase-1 (Ho-1) and manganese superoxide dismutase (Mnsod) following DHB pretreatment alone are also maintained in the presence of MPTP. MPTP-induced reductions in ferroportin and elevations in nigral and striatal iron levels were reverted to levels comparable with that of untreated controls with DHB pretreatment. Reductions in pyruvate dehydrogenase mRNA and activity resulting from MPTP were also found to be attenuated by DHB. In vitro, the HIF pathway was activated in N27 cells grown at 3% oxygen treated with either PHD inhibitors or an iron chelator. Concordant with our in vivo data, the MPP+-elicited increase in total iron as well as decreases in cell viability were attenuated in the presence of DHB. Taken together, these data suggest that protection against MPTP neurotoxicity may be mediated by alterations in iron homeostasis and defense against oxidative stress and mitochondrial dysfunction brought about by cellular HIF-1α induction. This study provides novel data extending the possible therapeutic utility of HIF induction to a Parkinson disease model of neurodegeneration, which may prove beneficial not only in this disorder itself but also in other diseases associated with metal-induced oxidative stress
    corecore