4 research outputs found

    A Multidisciplinary Approach to Probing Enthalpy–Entropy Compensation and the Interfacial Mobility Model

    No full text
    In recent years, interfacial mobility has gained popularity as a model with which to rationalize both affinity in ligand binding and the often observed phenomenon of enthalpy-entropy compensation. While protein contraction and reduced mobility, as demonstrated by computational and NMR techniques respectively, have been correlated to entropies of binding for a variety of systems, to our knowledge, Raman difference spectroscopy has never been included in these analyses. Here, non-resonance Raman difference spectroscopy, isothermal titration calorimetry, and x-ray crystallography were utilized to correlate protein contraction, as demonstrated by an increase in protein interior packing and decreased residual protein movement, with trends of enthalpy-entropy compensation. These results are in accord with the interfacial mobility model, and lend additional credence to this view of protein activity
    corecore