3 research outputs found

    Draft genome sequences of 25 Listeria monocytogenes isolates associated with human clinical Listeriosis in Ireland

    Get PDF
    Listeria monocytogenes is a Gram-positive opportunistic pathogen that is the causative agent of listeriosis. Here, we report the draft genome sequences of 25 L. monocytogenes strains isolated from patients with clinical listeriosis in the Republic of Ireland between 2013 and 201

    DNA Supercoiling Regulates the Motility of Campylobacter jejuni and Is Altered by Growth in the Presence of Chicken Mucus

    No full text
    Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans, but relatively little is known about the global regulation of virulence factors during infection of chickens or humans. This study identified DNA supercoiling as playing a key role in regulating motility and flagellar protein production and found that this supercoiling-controlled regulon is induced by growth in chicken mucus. A direct correlation was observed between motility and resting DNA supercoiling levels in different strains of C.Ā jejuni, and relaxation of DNA supercoiling resulted in decreased motility. Transcriptional analysis and Western immunoblotting revealed that a reduction in motility and DNA supercoiling affected the two-component regulatory system FlgRS and was associated with reduced FlgR expression, increased FlgS expression, and aberrant expression of flagellin subunits. Electron microscopy revealed that the flagellar structure remained intact. Growth in the presence of porcine mucin resulted in increased negative supercoiling, increased motility, increased FlgR expression, and reduced FlgS expression. Finally, this supercoiling-dependent regulon was shown to be induced by growth in chicken mucus, and the level of activation was dependent on the source of the mucus from within the chicken intestinal tract. In conclusion, this study reports for the first time the key role played by DNA supercoiling in regulating motility in C.Ā jejuni and indicates that the induction of this supercoiling-induced regulon in response to mucus from different sources could play a critical role in regulating motility in vivo

    Genomic Characterization of Listeria monocytogenes Isolates Associated with Clinical Listeriosis and the Food Production Environment in Ireland

    Get PDF
    Listeria monocytogenes is a major human foodborne pathogen that is prevalent in the natural environment and has a high case fatality rate. Whole genome sequencing (WGS) analysis has emerged as a valuable methodology for the classification of L. monocytogenes isolates and the identification of virulence islands that may influence infectivity. In this study, WGS was used to provide an insight into 25 L. monocytogenes isolates from cases of clinical infection in Ireland between 2013 and 2015. Clinical strains were either lineage I (14 isolates) or lineage II (11 isolates), with 12 clonal complexes (CC) represented, of which CC1 (6) and CC101 (4) were the most common. Single nucleotide polymorphism (SNP) analysis demonstrated that clinical isolates from motherā€“infant pairs (one isolate from the mother and one from the infant) were highly related (3 SNP differences in each) and also identified close similarities between isolates from otherwise distinct cases (1 SNP difference). Clinical strains were positive for common virulence-associated loci and 13 isolates harbour the LIPI-3 locus. Pulsed-field gel electrophoresis (PFGE) was used to compare strains to a database of 1300 Irish food and food processing environment isolates and determined that 64% of clinical pulsotypes were previously encountered in the food or food processing environment. Five of the matching food and food processing environment isolates were sequenced and results demonstrated a correlation between pulsotype and genotype. Overall, the work provides insights into the nature of L. monocytogenes strains currently causing clinical disease in Ireland and indicates that similar isolates can be found in the food or food processing environment
    corecore