3 research outputs found

    COOKING TIME AND SENSORY ANALYSIS OF A DRY BEAN DIVERSITY PANEL

    Get PDF
    INTRODUCTION - Cooking time and sensory quality are two important traits when selecting dry beans for consumption, but have largely been overlooked by breeders in favor of yield and other traits. Dry beans are an affordable, nutrient-rich food, but often require long cooking times, particularly without prior soaking. They also display a range of sensory characteristics, with consumers preferring cooked beans that are sweet and soft1. Increased interest in dry beans to make new products necessitates studies assessing the diversity of sensory traits in beans, which would allow beans to be selected for specific products. In this study, the Andean Diversity Panel2 (ADP) was assessed for cooking time and sensory characteristics in order to identify diversity for these traits. MATERIALS AND METHODS - Cooking Time Evaluation: 398 genotypes of the ADP were harvested in Hawassa, Ethiopia in 2015, six months prior to evaluation. Prior to cooking, each sample was soaked for 12 hours in 250 ml distilled water after ensuring moisture content was between 10-14%. Two replicates per genotype of 25 seeds each were cooked in random order in boiling distilled water using the Mattson cooker method for determining cooking time3. The Mattson cooker uses twenty-five 85g stainless steel rods with 2mm diameter pins that pierce beans loaded in wells when sufficiently cooked. For this study, the 50% and 80% cooking times were recorded, and the 80% cook time is regarded as the time required to cook each genotype to completion. The cooking time data was analyzed using the MIXED procedure in SAS with genotype as a fixed effect and rep as a random effect

    The role of genotype and production environment in determining the cooking time of dry beans (\u3ci\u3ePhaseolus vulgaris\u3c/i\u3e L.)

    Get PDF
    Dry bean (Phaseolus vulgaris L.) is a nutrient‐dense food rich in proteins and minerals. Although a dietary staple in numerous regions, including Eastern and Southern Africa, greater utilization is limited by its long cooking time as compared with other staple foods. A fivefold genetic variability for cooking time has been identified for P. vulgaris, and to effectively incorporate the cooking time trait into bean breeding programs, knowledge of how genotypes behave across diverse environments is essential. Fourteen bean genotypes selected from market classes important to global consumers (yellow, cranberry, light red kidney, red mottled, and brown) were grown in 10 to 15 environments (combinations of locations, years, and treatments), and their cooking times were measured when either presoaked or unsoaked prior to boiling. The 15 environments included locations in North America, the Caribbean, and Eastern and Southern Africa that are used extensively for dry bean breeding. The cooking times of the 14 presoaked dry bean genotypes ranged from 16 to 156 min, with a mean of 86 min across the 15 production environments. The cooking times of the 14 dry bean genotypes left unsoaked ranged from 77 to 381 min, with a mean cooking time of 113 min. The heritability of the presoaked cooking time was very high (98%) and moderately high for the unsoaked cooking time (~60%). The genotypic cooking time patterns were stable across environments. There was a positive correlation between the presoaked and unsoaked cooking times (r = .64, p \u3c 0.0001), and two of the fastest cooking genotypes when presoaked were also the fastest cooking genotypes when unsoaked (G1, Cebo, yellow bean; and G4, G23086, cranberry bean). Given the sufficient genetic diversity found, limited crossover Genotype × Environment interactions, and high heritability for cooking time, it is feasible to develop fast cooking dry bean varieties without the need for extensive testing across environments

    The role of genotype and production environment in determining the cooking time of dry beans (\u3ci\u3ePhaseolus vulgaris\u3c/i\u3e L.)

    Get PDF
    Dry bean (Phaseolus vulgaris L.) is a nutrient‐dense food rich in proteins and minerals. Although a dietary staple in numerous regions, including Eastern and Southern Africa, greater utilization is limited by its long cooking time as compared with other staple foods. A fivefold genetic variability for cooking time has been identified for P. vulgaris, and to effectively incorporate the cooking time trait into bean breeding programs, knowledge of how genotypes behave across diverse environments is essential. Fourteen bean genotypes selected from market classes important to global consumers (yellow, cranberry, light red kidney, red mottled, and brown) were grown in 10 to 15 environments (combinations of locations, years, and treatments), and their cooking times were measured when either presoaked or unsoaked prior to boiling. The 15 environments included locations in North America, the Caribbean, and Eastern and Southern Africa that are used extensively for dry bean breeding. The cooking times of the 14 presoaked dry bean genotypes ranged from 16 to 156 min, with a mean of 86 min across the 15 production environments. The cooking times of the 14 dry bean genotypes left unsoaked ranged from 77 to 381 min, with a mean cooking time of 113 min. The heritability of the presoaked cooking time was very high (98%) and moderately high for the unsoaked cooking time (~60%). The genotypic cooking time patterns were stable across environments. There was a positive correlation between the presoaked and unsoaked cooking times (r = .64, p \u3c 0.0001), and two of the fastest cooking genotypes when presoaked were also the fastest cooking genotypes when unsoaked (G1, Cebo, yellow bean; and G4, G23086, cranberry bean). Given the sufficient genetic diversity found, limited crossover Genotype × Environment interactions, and high heritability for cooking time, it is feasible to develop fast cooking dry bean varieties without the need for extensive testing across environments
    corecore