18 research outputs found

    Reconsidering the structure of nucleation theories

    Full text link
    We discuss the structure of the equation of motion that governs nucleation processes at first order phase transitions. From the underlying microscopic dynamics of a nucleating system, we derive by means of a non-equilibrium projection operator formalism the equation of motion for the size distribution of the nuclei. The equation is exact, i.e. the derivation does not contain approximations. To assess the impact of memory, we express the equation of motion in a form that allows for direct comparison to the Markovian limit. As a numerical test, we have simulated crystal nucleation from a supersaturated melt of particles interacting via a Lennard-Jones potential. The simulation data show effects of non-Markovian dynamics

    Memory effects in the Fermi-Pasta-Ulam Model

    Full text link
    We study the Intermediate Scattering Function (ISF) of the strongly-nonlinear Fermi-Pasta Ulam Model at thermal equilibrium, using both numerical and analytical methods. From the molecular dynamics simulations we distinguish two limit regimes, as the system behaves as an ideal gas at high temperature and as a harmonic chain for low excitations. At intermediate temperatures the ISF relaxes to equilibrium in a nontrivial fashion. We then calculate analytically the Taylor coefficients of the ISF to arbitrarily high orders (the specific, simple shape of the two-body interaction allows us to derive an iterative scheme for these.) The results of the recursion are in good agreement with the numerical ones. Via an estimate of the complete series expansion of the scattering function, we can reconstruct within a certain temperature range its coarse-grained dynamics. This is governed by a memory-dependent Generalized Langevin Equation (GLE), which can be derived via projection operator techniques. Moreover, by analyzing the first series coefficients of the ISF, we can extract a parameter associated to the strength of the memory effects in the dynamics

    Detailed balance in mixed quantum-classical mapping approaches

    Full text link
    The violation of detailed balance poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics. In order to analyze the severity of the problem, we predict the long-time limits of the electronic populations according to various quasiclassical mapping approaches, by applying arguments from classical ergodic theory. Our analysis confirms that regions of the mapping space that correspond to negative populations, which most mapping approaches introduce in order to go beyond the Ehrenfest approximation, pose the most serious issue for reproducing the correct thermalization behaviour. This is because inverted potentials, which arise from negative electronic populations entering into the nuclear force, can result in trajectories unphysically accelerating off to infinity. The recently developed mapping approach to surface hopping (MASH) provides a simple way of avoiding inverted potentials, while retaining an accurate description of the dynamics. We prove that MASH, unlike any other quasiclassical approach, is guaranteed to describe the exact thermalization behaviour of all quantum\unicode{x2013}classical systems, confirming it as one of the most promising methods for simulating nonadiabatic dynamics in real condensed-phase systems

    Spin-Mapping Methods for Simulating Ultrafast Nonadiabatic Dynamics

    Get PDF
    Many chemical reactions exhibit nonadiabatic effects as a consequence of coupling between electronic states and/or interaction with light. While a fully quantum description of nonadiabatic reactions is unfeasible for most realistic molecules, a more computationally tractable approach is to combine a classical description of the nuclei with a quantum description of the electronic states. Combining the formalisms of quantum and classical dynamics is however a difficult problem for which standard methods (such as Ehrenfest dynamics and surface hopping) may be insufficient. In this article, we review a new trajectory-based approach developed in our group that is able to describe nonadiabatic dynamics with a higher accuracy than previous approaches but for a similar level of computational effort. This method treats the electronic states with a phase-space representation for discrete-level systems, which in the two-level case is analogous to a spin-½. We point out the key features of the method and demonstrate its use in a variety of applications, including ultrafast transfer through conical intersections, damped coherent excitation under coupling to a strong light field, and nonlinear spectroscopy of light-harvesting complexes

    The Fermi-Pasta-Ulam system as a model for glasses

    Get PDF
    Abstract We show that the standard Fermi-Pasta-Ulam system, with a suitable choice for the inter particle potential, constitutes a model for glasses, and indeed an extremely simple and manageable one. Indeed, it allows one to describe the landscape of the minima of the potential energy and to deal concretely with any one of them, determining the spectrum of frequencies and the normal modes. A relevant role is played by the harmonic energy E relative to a given minimum, i.e., the expansion of the Hamiltonian about the minimum up to second order. Indeed we find that there exists an energy threshold in E such that below it the harmonic energy E appears to be an approximate integral of motion for the whole observation time. Consequently, the system remains trapped near the minimum, in what may be called a vitreous or glassy state. Instead, for larger values of E the system rather quickly relaxes to a final equilibrium state. Moreover we find that the vitreous states present peculiar statistical behaviors, still involving the harmonic energy E. Indeed, the vitreous states are described by a Gibbs distribution with an effective Hamiltonian close to E and with a suitable effective inverse temperature. The final equilibrium state presents instead statistical properties which are in very good agreement with the Gibbs distribution relative to the full Hamiltonian of the system

    On detailed balance in nonadiabatic dynamics: From spin spheres to equilibrium ellipsoids

    No full text
    Trajectory-based methods that propagate classical nuclei on multiple quantum electronic states are often used to simulate nonadiabatic processes in the condensed phase. A long-standing problem of these methods is their lack of detailed balance, meaning that they do not conserve the equilibrium distribution. In this article, we investigate ideas for restoring detailed balance in mixed quantum–classical systems by tailoring the previously proposed spin-mapping approach to thermal equilibrium. We find that adapting the spin magnitude can recover the correct long-time populations but is insufficient to conserve the full equilibrium distribution. The latter can however be achieved by a more flexible mapping of the spin onto an ellipsoid, which is constructed to fulfill detailed balance for arbitrary potentials. This ellipsoid approach solves the problem of negative populations that has plagued previous mapping approaches and can therefore be applied also to strongly asymmetric and anharmonic systems. Because it conserves the thermal distribution, the method can also exploit efficient sampling schemes used in standard molecular dynamics, which drastically reduces the number of trajectories needed for convergence. The dynamics does however still have mean-field character, as is observed most clearly by evaluating reaction rates in the golden-rule limit. This implies that although the ellipsoid mapping provides a rigorous framework, further work is required to find an accurate classical-trajectory approximation that captures more properties of the true quantum dynamics.ISSN:0021-9606ISSN:1089-769

    Detailed balance in mixed quantum–classical mapping approaches

    No full text
    The violation of detailed balance poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics. In order to analyze the severity of the problem, we predict the long-time limits of the electronic populations according to various quasiclassical mapping approaches by applying arguments from classical ergodic theory. Our analysis confirms that regions of the mapping space that correspond to negative populations, which most mapping approaches introduce in order to go beyond the Ehrenfest approximation, pose the most serious issue for reproducing the correct thermalization behavior. This is because inverted potentials, which arise from negative electronic populations entering the nuclear force, can result in trajectories unphysically accelerating off to infinity. The recently developed mapping approach to surface hopping (MASH) provides a simple way of avoiding inverted potentials while retaining an accurate description of the dynamics. We prove that MASH, unlike any other quasiclassical approach, is guaranteed to describe the exact thermalization behavior of all quantum–classical systems, confirming it as one of the most promising methods for simulating nonadiabatic dynamics in real condensed phase systems.ISSN:0021-9606ISSN:1089-769

    Quasiclassical approaches to the generalized quantum master equation

    No full text
    The formalism of the generalized quantum master equation (GQME) is an effective tool to simultaneously increase the accuracy and the efficiency of quasiclassical trajectory methods in the simulation of nonadiabatic quantum dynamics. The GQME expresses correlation functions in terms of a non-Markovian equation of motion, involving memory kernels that are typically fast-decaying and can therefore be computed by short-time quasiclassical trajectories. In this paper, we study the approximate solution of the GQME, obtained by calculating the kernels with two methods: Ehrenfest mean-field theory and spin-mapping. We test the approaches on a range of spin–boson models with increasing energy bias between the two electronic levels and place a particular focus on the long-time limits of the populations. We find that the accuracy of the predictions of the GQME depends strongly on the specific technique used to calculate the kernels. In particular, spin-mapping outperforms Ehrenfest for all the systems studied. The problem of unphysical negative electronic populations affecting spin-mapping is resolved by coupling the method with the master equation. Conversely, Ehrenfest in conjunction with the GQME can predict negative populations, despite the fact that the populations calculated from direct dynamics are positive definite.ISSN:0021-9606ISSN:1089-769
    corecore